Communication Networks
Spring 2023

Laurent Vanbever
nsg.ee.ethz.ch

ETH Zürich (D-ITET)
April 17 2023

Materials inspired from Scott Shenker & Jennifer Rexford
Last week on

Communication Networks
BGP is the routing protocol “glueing” the Internet together
BGP sessions come in two flavors
external BGP (eBGP) sessions
connect border routers in different ASes
eBGP sessions are used to learn routes to external destinations

129.132.0.0/16
Path: 20
internal BGP (iBGP) sessions connect the routers in the same AS
BGP needs to solve three key challenges: scalability, privacy and policy enforcement.

There is a huge # of networks and prefixes
1M prefixes, >70,000 networks, millions (!) of routers

Networks don’t want to divulge internal topologies or their business relationships

Networks needs to control where to send and receive traffic without an Internet-wide notion of a link cost metric
BGP relies on **path-vector routing** to support flexible routing policies and avoid count-to-infinity

key idea advertise the **entire path** instead of distances
On the wire, BGP is a rather simple protocol composed of four basic messages:

<table>
<thead>
<tr>
<th>Type</th>
<th>Used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN</td>
<td>establish TCP-based BGP sessions</td>
</tr>
<tr>
<td>NOTIFICATION</td>
<td>report unusual conditions</td>
</tr>
<tr>
<td>UPDATE</td>
<td>inform neighbor of a new best route</td>
</tr>
<tr>
<td></td>
<td>a change in the best route</td>
</tr>
<tr>
<td></td>
<td>the removal of the best route</td>
</tr>
<tr>
<td>KEEPALIVE</td>
<td>inform neighbor that the connection is alive</td>
</tr>
<tr>
<td>Attributes</td>
<td>Usage</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>NEXT-HOP</td>
<td>egress point identification</td>
</tr>
<tr>
<td>AS-PATH</td>
<td>loop avoidance</td>
</tr>
<tr>
<td></td>
<td>outbound traffic control</td>
</tr>
<tr>
<td></td>
<td>inbound traffic control</td>
</tr>
<tr>
<td>LOCAL-PREF</td>
<td>outbound traffic control</td>
</tr>
<tr>
<td>MED</td>
<td>inbound traffic control</td>
</tr>
</tbody>
</table>
This week on

Communication Networks
Border Gateway Protocol
policies and more

BGP Policies
Follow the Money

Protocol
How does it work?

Problems
security, performance, ...
BGP suffers from many rampant problems

Problems

- Reachability
- Security
- Convergence
- Performance
- Anomalies
- Relevance
Problems

Reachability

Security

Convergence

Performance

Anomalies

Relevance
Unlike normal routing, policy routing does not guarantee reachability even if the graph is connected.

Because of policies, Swisscom cannot reach DT even if the graph is connected.
<table>
<thead>
<tr>
<th>Problems</th>
<th>Reachability</th>
<th>Security</th>
<th>Convergence</th>
<th>Performance</th>
<th>Anomalies</th>
<th>Relevance</th>
</tr>
</thead>
</table>

Many security considerations are absent from the BGP specification

ASes can advertise any prefixes even if they don’t own them!

ASes can arbitrarily modify route content e.g., change the content of the AS-PATH

ASes can forward traffic along different paths than the advertised one
BGP (lack of) security

#1 BGP does not validate the origin of advertisements

#2 BGP does not validate the content of advertisements
BGP (lack of) security

#1 BGP does not validate the origin of advertisements

#2 BGP does not validate the content of advertisements
IP Address Ownership and Hijacking

• IP address block assignment
 – Regional Internet Registries (ARIN, RIPE, APNIC)
 – Internet Service Providers

• Proper origination of a prefix into BGP
 – By the AS who owns the prefix
 – ... or, by its upstream provider(s) in its behalf

• However, what’s to stop someone else?
 – Prefix hijacking: another AS originates the prefix
 – BGP does not verify that the AS is authorized
 – Registries of prefix ownership are inaccurate
Prefix Hijacking

- **Blackhole**: data traffic is discarded
- **Snooping**: data traffic is inspected, then redirected
- **Impersonation**: traffic sent to bogus destinations
Hijacking is Hard to Debug

• The victim AS doesn’t see the problem
 – Picks its own route, might not learn the bogus route

• May not cause loss of connectivity
 – Snooping, with minor performance degradation

• Or, loss of connectivity is isolated
 – E.g., only for sources in parts of the Internet

• Diagnosing prefix hijacking
 – Analyzing updates from many vantage points
 – Launching traceroute from many vantage points
• Originating a more-specific prefix
 – Every AS picks the bogus route for that prefix
 – Traffic follows the longest matching prefix
How to Hijack a Prefix

• The hijacking AS has
 – Router with BGP session(s)
 – Configured to originate the prefix

• Getting access to the router
 – Network operator makes configuration mistake
 – Disgruntled operator launches an attack
 – Outsider breaks in to the router and reconfigures

• Getting other ASes to believe bogus route
 – Neighbor ASes do not discard the bogus route
 – E.g., not doing protective filtering
YouTube Outage on Feb 24, 2008

• YouTube (AS 36561)
 – Web site www.youtube.com (208.65.152.0/22)

• Pakistan Telecom (AS 17557)
 – Government order to block access to YouTube
 – Announces 208.65.153.0/24 to PCCW (AS 3491)
 – All packets to YouTube get dropped on the floor

• Mistakes were made
 – AS 17557: announce to everyone, not just customers
 – AS 3491: not filtering routes announced by AS 17557

• Lasted 100 minutes for some, 2 hours for others
Timeline (UTC Time)

• 18:47:45
 – First evidence of hijacked /24 route in Asia
• 18:48:00
 – Several big trans-Pacific providers carrying the route
• 18:49:30
 – Bogus route fully propagated
• 20:07:25
 – YouTube starts advertising /24 to attract traffic back
• 20:08:30
 – Many (but not all) providers are using valid route
Timeline (UTC Time)

• 20:18:43
 – YouTube announces two more-specific /25 routes
• 20:19:37
 – Some more providers start using the /25 routes
• 20:50:59
 – AS 17557 starts prepending (“3491 17557 17557”)
• 20:59:39
 – AS 3491 disconnects AS 17557
• 21:00:00
 – Videos of cats flushing toilets are available again!
Another Example: Spammers

• Spammers sending spam
 – Form a (bidirectional) TCP connection to mail server
 – Send a bunch of spam e-mail, then disconnect

• But, best not to use your real IP address
 – Relatively easy to trace back to you

• Could hijack someone’s address space
 – But you might not receive all the (TCP) return traffic

• How to evade detection
 – Hijack unused (i.e., unallocated) address block
 – Temporarily use the IP addresses to send your spam
BGP (lack of) security

#1 BGP does not validate the origin of advertisements

#2 BGP does not validate the content of advertisements
Bogus AS Paths

• Remove ASes from the AS path
 – E.g., turn “701 3715 88” into “701 88”

• Motivations
 – Attract sources that normally try to avoid AS 3715
 – Help AS 88 look like it is closer to the Internet’s core

• Who can tell that this AS path is a lie?
 – Maybe AS 88 does connect to AS 701 directly
Bogus AS Paths

• Add ASes to the path
 – E.g., turn “701 88” into “701 3715 88”

• Motivations
 – Trigger loop detection in AS 3715
 • Denial-of-service attack on AS 3715
 • Or, blocking unwanted traffic coming from AS 3715!
 – Make your AS look like is has richer connectivity

• Who can tell the AS path is a lie?
 – AS 3715 could, if it could see the route
 – AS 88 could, but would it really care?
Bogus AS Paths

• Adds AS hop(s) at the end of the path
 – E.g., turns “701 88” into “701 88 3”

• Motivations
 – Evade detection for a bogus route
 – E.g., by adding the legitimate AS to the end

• Hard to tell that the AS path is bogus...
 – Even if other ASes filter based on prefix ownership

18.0.0.0/8

18.0.0.0/8

88

701

3
Invalid Paths

- AS exports a route it shouldn’t
 - AS path is a valid sequence, but violated policy

- Example: customer misconfiguration
 - Exports routes from one provider to another

- Interacts with provider policy
 - Provider prefers customer routes
 - Directing all traffic through customer

- Main defense
 - Filtering routes based on prefixes and AS path
Missing/Inconsistent Routes

• Peers require consistent export
 – Prefix advertised at all peering points
 – Prefix advertised with same AS path length

• Reasons for violating the policy
 – Trick neighbor into “cold potato”
 – Configuration mistake

• Main defense
 – Analyzing BGP updates, or traffic,
 – ... for signs of inconsistency
Proposed Enhancements to BGP
Secure BGP

Origin Authentication + cryptographic signatures

Public Key Signature: Anyone who knows v’s public key can verify that the message was sent by v.
S-BGP Secure Version of BGP

• **Address attestations**
 – Claim the right to originate a prefix
 – Signed and distributed out-of-band
 – Checked through delegation chain from ICANN

• **Route attestations**
 – Distributed as an attribute in BGP update message
 – Signed by each AS as route traverses the network

• **S-BGP can validate**
 – AS path indicates the order ASes were traversed
 – No intermediate ASes were added or removed
S-BGP Deployment Challenges

• Complete, accurate registries of prefix “owner”
• Public Key Infrastructure
 – To know the public key for any given AS
• Cryptographic operations
 – E.g., digital signatures on BGP messages
• Need to perform operations quickly
 – To avoid delaying response to routing changes
• Difficulty of incremental deployment
 – Hard to have a “flag day” to deploy S-BGP
BGP Security Today

• Resource Public Key Infrastructure (RPKI)
 – A framework to support improved BGP security:
 1. A secure way to map AS numbers to IP prefixes.
 2. A distributed repository system for storing and disseminating the mappings.

• RPKI operations
 – RPKI relies on cryptographic certificates (X.509)
 – The certificate infrastructure mimics the way IP prefixes are distributed: from IANA, to Regional Internet Registries (RIR), to end-customers.
 – A Route Origination Authorization (ROA) states which AS is authorised to originate certain IP prefixes.
<table>
<thead>
<tr>
<th>Problems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reachability</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>Anomalies</td>
<td></td>
</tr>
<tr>
<td>Relevance</td>
<td></td>
</tr>
</tbody>
</table>
With arbitrary policies, BGP may have multiple stable states.

preference list

1 prefers to reach 0 via 2 rather than directly.
If AS2 is the **first** to advertise 2 0, the system stabilizes in a state where AS 1 is happy.
If AS1 is the first one to advertise 1 0, the system stabilizes in a state where AS 2 is happy.
The actual assignment depends on the ordering between the messages

Note that AS1/AS2 could change the outcome by manual intervention

... this is not always possible *

* https://www.nanog.org/meetings/nanog31/presentations/griffin.pdf
With arbitrary policies, BGP may fail to converge
preference list

1 prefers to reach 0 via 3 rather than directly
Initially, all ASes only know the direct route to 0.
AS 1 advertises its path to AS 2
Upon reception,
AS 2 switches to 2 1 0 (preferred)
AS 3 advertises its path to AS 1
Upon reception,
AS 1 switches to 1 3 0 (preferred)
AS 1 advertises its new path 1 3 0 to AS 2
Upon reception, AS 2 reverts back to its initial path 2 0
AS 2 advertises its path 2 0 to AS 3
Upon reception,
AS 3 switches to 3 2 0 (preferred)
AS 3 advertises its new path 3 2 0 to AS 1
Upon reception,
AS 1 reverts back to 1 0 (initial path)
AS 1 advertises its new path 1 0 to AS 2
Upon reception, AS 2 switches to 2 1 0 (preferred)
AS 2 advertises its new path 2 1 0 to AS 3
Upon reception,
AS 3 switches to its initial path 3 0
We are back where we started, from there on, the oscillation will continue forever
Policy oscillations are a direct consequence of policy autonomy

ASes are free to chose and advertise any paths they want

network stability argues against this

Guaranteeing the absence of oscillations is hard
even when you know all the policies!
Guaranteeing the absence of oscillations is hard even when you know all the policies!

How come?
Computationally, a BGP network is as “powerful” as

see “Using Routers to Build Logic Circuits: How Powerful is BGP?”
How do you prove such a thing?
How do you prove such a thing?

Easy, you build a computer using BGP…
Logic gates
BGP has it all!
BGP has it all!

famous incorrect BGP configurations (Griffin et al.)
Instead of using Minecraft for building a computer… use BGP!

Hack III, Minecraft’s largest computer to date
Together, BGP routers form the largest computer in the world!
Checking BGP correctness is as hard as checking the termination of a general program

Theorem 1
Determining whether a finite BGP network converges is PSPACE-hard

Theorem 2
Determining whether an infinite BGP network converges is Turing-complete
Using Routers to Build Logic Circuits: How Powerful is BGP?

Marco Chiesa* Luca Cittadini* Giuseppe Di Battista* Laurent Vanbever* Stefano Vissicchio†
*Roma Tre University †Princeton University ‡Université catholique de Louvain
(CHIESA, RATM, GDB)@dia.uniroma3.it VANBEVER@CS.PRINCETON.EDU STEFANO.VISSICCHIO@UCLouvain.BE

Abstract—Because of its practical relevance, the Border Gateway Protocol (BGP) has been the target of a huge research effort since more than a decade. In particular, many contributions aimed at characterizing the computational complexity of BGP-related problems. In this paper, we answer computational complexity questions by unveiling a fundamental mapping between BGP configurations and logic circuits. Namely, we describe simple networks containing routers with elementary BGP configurations that simulate logic gates, clocks, and flip-flops, and we show how to interconnect them to simulate arbitrary logic circuits. We then investigate the implications of such a mapping on the feasibility of solving BGP fundamental problems, and prove that, under realistic assumptions, BGP has the same computing power as a Turing Machine. We also investigate the impact of restrictions on the expressiveness of BGP policies and route propagation (e.g., route propagation rules in iBGP and Local Transit Policies in eBGP) and the impact of different message timing models. Finally, we show that the mapping is not limited to BGP and can be applied to generic routing protocols that use general metrics.

We build this mapping assuming a simplified model for BGP routing policies which does not include advanced BGP features like MED or conditional advertisement.

In this paper, we investigate the theoretical consequences of the existence of such a mapping between BGP configurations and logic circuits. We make the following four contributions.

First, we leverage the mapping to characterize the computational complexity of several routing problems in a “bounded” asynchronous model. Contrary to previous works on BGP complexity, in this model each network link is associated with a network delay bounded between finite minimum and maximum values. This effectively imposes a partial order on the exchange of BGP updates. Previous lower bounds for BGP related problems have been proved in models that allow BGP messages to be arbitrarily (even if not indefinitely) delayed [2], [3], [10], [11], [12], [13], [14]. Moreover, the rest of the literature addressing BGP complexity has been restricted to the “unbounded” synchronous model in which messages are transmitted instantaneously [1]. This model is not only unrealistic, but also too restrictive to capture the complexity of routing in the Internet.}

Check our paper for more details
In practice though, BGP does not oscillate “that” often

Theorem
If all AS policies follow the cust/peer/provider rules, BGP is *guaranteed* to converge

Intuition
Oscillations require “preferences cycles” which make no economical sense

known as “Gao-Rexford” rules
Problems

Reachability

Security

Convergence

Performance

Anomalies

Relevance
BGP path selection is mostly economical, not based on accurate performance criteria.

BGP says that path 4-1 is better than path 3-2-1.
Problems

Reachability
Security
Convergence
Performance
Anomalies
Relevance
BGP configuration is hard to get right

BGP is both “bloated” and underspecified
lots of knobs and (sometimes, conflicting) interpretations

BGP is often manually configured
humans make mistakes, often

BGP abstraction is fundamentally flawed
disjoint, router-based configuration to effect AS-wide policy
Google routing blunder sent Japan's Internet dark on Friday

Another big BGP blunder

By Richard Chirgwin 27 Aug 2017 at 22:35

Last Friday, someone in Google fat-thumbed a border gateway protocol (BGP) advertisement and sent Japanese Internet traffic into a black hole.

The trouble began when The Chocolate Factory "leaked" a big route table to Verizon, the result of which was traffic from Japanese giants like NTT and KDDI was sent to Google on the expectation it would be treated as transit.

Since Google doesn’t provide transit services, as BGP Mon explains, that traffic either filled a link beyond its capacity, or hit an access control list, and disappeared.

The outage in Japan only lasted a couple of hours, but was so severe that Japan Times reports the country's Internal Affairs and Communications ministries want carriers to report on what went wrong.

BGP Mon dissects what went wrong here, reporting that more than
In August 2017

Someone in Google fat-thumbed a Border Gateway Protocol (BGP) advertisement and sent Japanese Internet traffic into a black hole.
In August 2017

Someone in Google fat-thumbed a Border Gateway Protocol (BGP) advertisement and sent Japanese Internet traffic into a black hole.

[...] Traffic from Japanese giants like NTT and KDDI was sent to Google on the expectation it would be treated as transit.
Tokyo to Nagoya
(normally)
Tokyo to Nagoya via... Chicago?!

A 17x increased latency!

256 ms
instead of 15 ms
In August 2017

Someone in Google fat-thumbed a Border Gateway Protocol (BGP) advertisement and sent Japanese Internet traffic into a black hole.

[...] Traffic from Japanese giants like NTT and KDDI was sent to Google on the expectation it would be treated as transit.

The outage in Japan only lasted a couple of hours but was so severe that [...] the country's Internal Affairs and Communications ministries want carriers to report on what went wrong.
Another example, this time from November 2017

For a little more than 90 minutes yesterday, internet service for millions of users in the U.S. and around the world slowed to a crawl. Was this widespread service degradation caused by the time. The cause was yet another BGP routing leak — a router

https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/
For a little more than 90 minutes [...],

Internet service for millions of users in the U.S. and around the world slowed to a crawl.

The cause was yet another BGP routing leak, a **router misconfiguration** directing Internet traffic from its intended path to somewhere else.
“Human factors are responsible for 50% to 80% of network outages”

Ironically, this means that the Internet works better during the week-ends...

![Graph showing % of route leaks by day of the week]

% of route leaks

Source: Job Snijders (NTT)
Problems

- Reachability
- Security
- Convergence
- Performance
- Anomalies
- Relevance
The world of BGP policies is rapidly changing

ISPs are now eyeballs talking to content networks
e.g., Swisscom and Netflix/Spotify/YouTube

Transit becomes less important and less profitable
traffic move more and more to interconnection points

No systematic practices, yet
details of peering arrangements are private anyway
Border Gateway Protocol
policies and more

BGP Policies
Follow the Money

Protocol
How does it work?

Problems
security, performance, ...