Communication Networks
Spring 2022

Laurent Vanbever
nsg.ee.ethz.ch

ETH Zürich (D-ITET)
April 4 2022

Materials inspired from Scott Shenker & Jennifer Rexford
Last week on

Communication Networks
Internet Protocol and Forwarding

1. IP addresses
 use, structure, allocation

2. IP forwarding
 longest prefix match rule

3. IP header
 IPv4 and IPv6, wire format

source: Boardwatch Magazine
Internet routing

http://www.opte.org
Internet routing
from here to there, and back

1. Intra-domain routing
 - Link-state protocols
 - Distance-vector protocols

2. Inter-domain routing
 - Path-vector protocols
This week on
Communication Networks
Border Gateway Protocol
policies and more

1. Protocol
 How it works

2. Policies
 "Follow the money"

3. Problems
 Security, performance, …
Border Gateway Protocol

policies and more

1 Protocol
 How it works

Policies
 "Follow the money"

Problems
 Security, performance, …
BGP sessions come in two flavors
external BGP (eBGP) sessions
connect border routers in different ASes
eBGP sessions are used to learn routes to external destinations

129.132.0.0/16
Path: 20
internal BGP (iBGP) sessions connect the routers in the same AS
iBGP sessions are used to disseminate externally-learned routes internally
I can reach “129.132/16” via SEAT, internal NH is CHIC learned via IGP (e.g., OSPF)
Routes disseminated internally are then announced externally again, using eBGP sessions.
On the wire, BGP is a rather simple protocol composed of four basic messages

<table>
<thead>
<tr>
<th>Type</th>
<th>Used to…</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN</td>
<td>establish TCP-based BGP sessions</td>
</tr>
<tr>
<td>NOTIFICATION</td>
<td>report unusual conditions</td>
</tr>
<tr>
<td>UPDATE</td>
<td>inform neighbor of a new best route</td>
</tr>
<tr>
<td></td>
<td>a change in the best route</td>
</tr>
<tr>
<td></td>
<td>the removal of the best route</td>
</tr>
<tr>
<td>KEEPALIVE</td>
<td>inform neighbor that the connection is alive</td>
</tr>
</tbody>
</table>
UPDATE

inform neighbor of a new best route
a change in the best route
the removal of the best route
BGP UPDATEs carry an IP prefix together with a set of attributes
BGP UPDATEs carry an IP prefix together with a set of attributes

- IP prefix
- Attributes

 - Describe route properties used in route selection/exportation decisions
 - are either local (only seen on iBGP)
 - or global (seen on iBGP and eBGP)
<table>
<thead>
<tr>
<th>Attributes</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT-HOP</td>
<td>egress point identification</td>
</tr>
<tr>
<td>AS-PATH</td>
<td>loop avoidance</td>
</tr>
<tr>
<td></td>
<td>outbound traffic control</td>
</tr>
<tr>
<td></td>
<td>inbound traffic control</td>
</tr>
<tr>
<td>LOCAL-PREF</td>
<td>outbound traffic control</td>
</tr>
<tr>
<td>MED</td>
<td>inbound traffic control</td>
</tr>
</tbody>
</table>
The **NEXT-HOP** is a global attribute which indicates where to send the traffic next
The NEXT-HOP is set when the route enters an AS, by default, it does not change *within* the AS.
For externally-learned routes, this means that the NEXT-HOP is the IP address of the neighbor's eBGP router, here **10.0.0.1** for at&t
For this router, reaching 10.0.0.1 is not a problem as it is directly connected to the corresponding subnet (10.0.0.0/30)
That router is *not* directly to the NEXT-HOP's subnet (10.0.0.0/30) and does not know how to reach it, it will therefore drop the BGP route...
One solution is for the external router to redistribute the prefixes attached to the external interfaces into the IGP and announce 10.0.0.0/30 in OSPF.
Another solution is for the border router to rewrite the NEXT-HOP before sending it over iBGP, usually to its loopback address.
Of course, **loopback addresses** need to be reachable network-wide. Typically, each router advertises its loopback (as a /32) in the IGP.
Rewriting the next-hop to the eBGP router's loopback is known as "next-hop-self"
The advantage of next-hop-self is to spare the need to advertise each prefix attached to an external link in the IGP.

one NEXT-HOP, 40.0.0.1, is used to reach routes announced by AS 40, 41, 42, 43...
The **AS-PATH** is a global attribute that lists all the ASes a route has traversed *(in reverse order)*.
The **LOCAL-PREF** is a *local* attribute set at the border, it represents how “preferred” a route is
Provider #1 (\$\$)

Provider #2 (\$

set LOCAL-PREF to 50

set LOCAL-PREF to 100
By setting a higher LOCAL-PREF, all routers end up using DT to reach any external prefixes, even if they are closer (IGP-wise) to the Swisscom egress.
The MED is a *global* attribute which encodes the relative “proximity” of a prefix wrt to the announcer.
Swisscom receives two routes to reach p
Swisscom receives two routes to reach p and chooses (arbitrarily) its left router as egress.
Yet, ETH would prefer to receive traffic for p on its right border router which is closer to the actual destination.
ETH can communicate that preferences to Swisscom by setting a higher MED on *p* when announced from the left.
Swisscom receives two routes to reach \(p \) and, *given it does not cost it anything more*, chooses its right router as egress.
Swisscom receives two routes to reach \(p \)
and, given it does not cost it anything more,
chooses its right router as egress

But what if it does?
Consider that Swisscom always prefer to send traffic via its left egress point (bigger router, less costly)

- Set MED to 20
- Set LP to 200
- Set MED to 10
- Set LP to 50

`p: 82.130.64.0/18`
In this case, Swisscom will not care about the MED value and still push the traffic via its left router.
Lesson

The network which is sending the traffic always has the final word when it comes to deciding where to forward.

Corollary

The network which is receiving the traffic can just influence remote decision, not control them.
With the MED, an AS can influence its inbound traffic between multiple connection towards the same AS.

ETH cannot use the MED to move incoming traffic to Swisscom.

p: 82.130.64.0/18
BGP UPDATEs carry an IP prefix together with a set of attributes.

- **Attributes**: Describe route properties used in route selection/exportation decisions.
- IP prefix
- used in route selection/exportation decisions
- are either local (only seen on iBGP)
- or global (seen on iBGP and eBGP)
Each BGP router processes UPDATEs according to a precise pipeline.
All acceptable routes

BGP Decision Process

Best route to each destination

forwarding entries

IP forwarding table
Given the set of all acceptable routes for each prefix, the BGP Decision process elects a single route.

BGP is often referred to as a single path protocol.
Prefer routes…

with higher LOCAL-PREF

with shorter AS-PATH length

with lower MED

learned via eBGP instead of iBGP

with lower IGP metric to the next-hop

with smaller egress IP address (tie-break)
learned via eBGP instead of iBGP

with lower IGP metric to the next-hop
These two steps aim at directing traffic as quickly as possible out of the AS (early exit routing)
ASes are selfish

They dump traffic as soon as possible to someone else

This leads to asymmetric routing

Traffic does not flow on the same path in both directions
Border Gateway Protocol

policies and more

Protocol
How it works

Policies
"Follow the money"

Problems
Security, performance, …
The Internet topology is shaped according to **business relationships**
Intuition

2 ASes connect **only if** they have a business relationship.

BGP is a “follow the money” protocol.
There are 2 main business relationships today:

- customer/provider
- peer/peer

many less important ones (siblings, backups,...)
There are 2 main business relationships today:

- customer/provider
- peer/peer
Customers pay providers to get Internet connectivity
The amount paid is based on peak usage, usually according to the 95th percentile rule.

Every 5 minutes, DT records the # of bytes sent/received.

At the end of the month, DT:
- sorts all values in decreasing order
- removes the top 5% values
- bills wrt highest remaining value
Most ISPs discounts traffic unit price when pre-committing to certain volume

<table>
<thead>
<tr>
<th>commit</th>
<th>unit price ($)</th>
<th>Minimum monthly bill ($/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mbps</td>
<td>12</td>
<td>120</td>
</tr>
<tr>
<td>100 Mbps</td>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>1 Gbps</td>
<td>3.50</td>
<td>3,500</td>
</tr>
<tr>
<td>10 Gbps</td>
<td>1.20</td>
<td>12,000</td>
</tr>
<tr>
<td>100 Gbps</td>
<td>0.70</td>
<td>70,000</td>
</tr>
</tbody>
</table>

Examples taken from The 2014 Internet Peering Playbook
Internet Transit Prices have been continuously declining during the last 20 years

<table>
<thead>
<tr>
<th>Year</th>
<th>Internet Transit Price</th>
<th>% decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>$1,200.00 per Mbps</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>$800.00 per Mbps</td>
<td>33%</td>
</tr>
<tr>
<td>2000</td>
<td>$675.00 per Mbps</td>
<td>16%</td>
</tr>
<tr>
<td>2001</td>
<td>$400.00 per Mbps</td>
<td>41%</td>
</tr>
<tr>
<td>2002</td>
<td>$200.00 per Mbps</td>
<td>50%</td>
</tr>
<tr>
<td>2003</td>
<td>$120.00 per Mbps</td>
<td>40%</td>
</tr>
<tr>
<td>2004</td>
<td>$90.00 per Mbps</td>
<td>25%</td>
</tr>
<tr>
<td>2005</td>
<td>$75.00 per Mbps</td>
<td>17%</td>
</tr>
<tr>
<td>2006</td>
<td>$50.00 per Mbps</td>
<td>33%</td>
</tr>
<tr>
<td>2007</td>
<td>$25.00 per Mbps</td>
<td>50%</td>
</tr>
<tr>
<td>2008</td>
<td>$12.00 per Mbps</td>
<td>52%</td>
</tr>
<tr>
<td>2009</td>
<td>$9.00 per Mbps</td>
<td>25%</td>
</tr>
<tr>
<td>2010</td>
<td>$5.00 per Mbps</td>
<td>44%</td>
</tr>
<tr>
<td>2011</td>
<td>$3.25 per Mbps</td>
<td>35%</td>
</tr>
<tr>
<td>2012</td>
<td>$2.34 per Mbps</td>
<td>28%</td>
</tr>
<tr>
<td>2013</td>
<td>$1.57 per Mbps</td>
<td>33%</td>
</tr>
<tr>
<td>2014</td>
<td>$0.94 per Mbps</td>
<td>40%</td>
</tr>
<tr>
<td>2015</td>
<td>$0.63 per Mbps</td>
<td>33%</td>
</tr>
</tbody>
</table>

The reason? Internet commoditization & competition
There are 2 main business relationships today:

- customer/provider
- peer/peer
Peers don’t pay each other for connectivity, they do it *out of common interest*

DT and ATT exchange *tons* of traffic.
they save money by directly connecting to each other
To understand Internet routing, follow the money
Providers transit traffic for their customers

allowed

allowed
Peers do not transit traffic between each other
Customers do not transit traffic between their providers.
These policies are defined by constraining which BGP routes are *selected* and *exported*

- **Selection**
 - which path to use?

- **Export**
 - which path to advertise?
which path to use?
control outbound traffic

which path to advertise?
always prefer Deutsche Telekom routes over AT&T
always prefer Deutsche Telekom routes over AT&T
Business relationships conditions

route selection

For a destination p, prefer routes coming from

- customers over
- peers over providers

route type
which path to use?

which path to advertise?
control inbound traffic
do not export ETH routes to AT&T
do not export ETH routes to AT&T
These policies are defined by constraining which BGP routes are \textit{selected} and \textit{exported}.

\begin{itemize}
 \item \textbf{Selection}: which path to use?
 \item \textbf{Export}: which path to advertise?
\end{itemize}
Selection

which path to use?
control outbound traffic

Export

which path to advertise?
Business relationships conditions

route selection

For a destination \(p \), prefer routes coming from

- customers over peers over providers

route type
which path to use?

click me!

which path to advertise?

control inbound traffic
Business relationships conditions

route exportation

send to

customer peer provider

customer

from

peer

provider
Routes coming from customers are propagated to everyone else.
Routes coming from peers and providers are only propagated to customers

<table>
<thead>
<tr>
<th></th>
<th>send to</th>
</tr>
</thead>
<tbody>
<tr>
<td>customer</td>
<td>✓</td>
</tr>
<tr>
<td>peer</td>
<td>✓</td>
</tr>
<tr>
<td>provider</td>
<td>✓</td>
</tr>
</tbody>
</table>

- peer ✓ - -
- provider ✓ - -
provider

AS A

→

AS D

customer
Is (B, A, D) a valid path? Yes/No
Is (H, E, D) a valid path? Yes/No
Is \((G,D,A,B,E,H)\) a valid path? Yes/No
Will \((G,D,A,B,E,H)\) actually see packets? Yes/No
What’s a valid path between G and I?
Let’s look at how operators implement customer/provider and peer policies in practice
To implement their selection policy, operators define input filters which manipulate the LOCAL-PREF for a destination p, prefer routes coming from

- customers over
- peers over $route$ type
- providers
AS10

AS 30
peer

input filter:
match *, set LP := 100

AS 40
provider

input filter:
match *, set LP := 50

AS 20
customer

input filter:
match *, set LP := 200
To implement their exportation rules, operators use a mix of import and export filters

<table>
<thead>
<tr>
<th>send to</th>
<th>customer</th>
<th>peer</th>
<th>provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>from customer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>peer</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>provider</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
input filter:
match *, set TAG := CUST
output filter:
match TAG := *, allow
else deny

input filter:
match *, set TAG := PEER
output filter:
match TAG := CUST, allow
else deny

input filter:
match *, set TAG := PROV
output filter:
match TAG := CUST, allow
else deny