Communication Networks
Prof. Laurent Vanbever

Solution: Exercise 1 – Introduction

Internet Structure

1.1 Layer Model

Communication over the Internet can be decomposed into independent layers. In the lecture, we have discussed the Internet protocol stack which contains 5 layers. Another often used model is the OSI (Open Systems Interconnection) model with 7 layers. Find the best matching layer for the following operations/devices. You can use the already known 5-layer model.

Hint: Some of the operations could be implemented in different layers.

- a) Bit-to-bit transmission between two devices.
 Solution: Physical layer

- b) Encryption of a message.
 Solution: Application layer

- c) A switch in a network.
 Solution: Link layer

- d) Routing path search.
 Solution: Network layer

- e) Adding a sequence number to each packet.
 Solution: Transport layer (e.g. TCP protocol), but also the application layer could provide this functionality.

- f) A router in a network.
 Solution: Network layer

- g) A middlebox in a network performing deep packet inspection (DPI) to find malware in Web traffic.
 Solution: To analyze the payload of packets the middlebox is operating in the application layer. Most likely, it will also use information from other layers, e.g. IP addresses from the network layer.
1.2 Internet Organization

The network on the left consists of multiple autonomous systems (AS). Single-headed arrows point from providers to their customers. Double-headed arrows represent peer connections.

a) For each AS, identify if it is a Tier-1, Tier-2 or Tier-3 ISP network or an IXP.

b) AS7 has two different providers (AS1 and AS2). How is this type of interconnection called? What are the advantages of multiple different providers for AS7? Can you see any disadvantages?

Solution: Multihoming.

Advantages: Still connected if one of the provider fails. For destinations (IP prefixes) which can be reached over both providers, AS7 can choose the better one based on cost, trust, ...

Disadvantages: network configuration is slightly more difficult. The total cost could be higher compared to an ISP with only one provider.
1.3 Internet Communication

The figure on the left shows a (simplified version of a) packet that was recorded at your machine’s network interface using Wireshark\(^a\).

a) What kind of activity does this packet belong to?

Solution: Web browsing. The easiest way to see this is by looking at the payload of the application layer (the lower-most box in the figure). There, one can see that the packet contains a HTTP-GET request to `comm-net.ethz.ch`.

b) From the lecture, you know that a packet is composed of data in different layers. The fields in the left-hand figure are already grouped to four blocks representing the link, network, transport and application layer. Do you know which protocol is used in each of the four layers? *Hint: You may want to have a look at the list of protocols on Wikipedia*\(^b\).

Solution:

- **Link layer:** Ethernet (indicated by the address-format `00:00:00:00:00:00`)
- **Network layer:** IP version 4 (indicated by the address-format `000.000.000.000`)
- **Transport layer:** TCP (identifiable by comparing with the format of the TCP-header\(^c\))
- **Application layer:** HTTP (HTTP-Request in plain text)

c) After being sent out at your machine’s network interface, the packet will traverse a switch which will forward it based on the destination address. On which layer does the switch operate and which is the destination address it will look at?

Solution: Switches operate at the link layer. The destination address in this layer is `64:a0:e7:42:2e:c2`.

d) After leaving your local network, the packet will traverse a router. On which layer does the router operate and which is the destination address it will look at?

Solution: Routers operate at the network layer. The destination address in this layer is `82.130.102.210`.

\(^a\)https://www.wireshark.org/
\(^b\)https://en.wikipedia.org/wiki/Internet_protocol_suite
\(^c\)https://en.wikipedia.org/wiki/Transmission_Conrol_Protocol
Calculate and compare the bandwidth and the delay for different communication methods.

Solution: General formulas:

\[
\text{delay} = \frac{\text{distance from A to B}}{\text{speed}}
\]

\[
\text{bandwidth} = \frac{\text{total amount of data in bits}}{\text{delay}}
\]

a) Pigeon post: Pigeons can be used as messengers. They are trained to transport messages from one location to another. Assuming you want to send a USB flash drive with 16 GB from Zürich to a friend in Paris (500 km) (only in one direction). Calculate the bandwidth and the delay for one pigeon carrying the USB drive and traveling at an average speed of 80 km/h.

Solution:

Delay: \[
d = \frac{500 \text{ km}}{80 \text{ km/h}} = 6.25 \text{ h} = 22'500 \text{ s}
\]

Bandwidth: \[
bw = \frac{1.28 \times 10^{11} \text{ bits}}{2.25 \times 10^4 \text{ s}} \approx 5.7 \text{ Mbps}
\]

b) Pneumatic tube: These systems were introduced in the late 19th century to transport small, urgent items within buildings or even within cities. The capsules travel at an average speed of 8 meters per second. Assuming you send an external hard drive with 2 TB of storage through a tube from ETZ to the main building (distance 400 m), calculate the bandwidth and delay.

Solution:

Delay: \[
d = \frac{400 \text{ m}}{8 \text{ m/s}} = 50 \text{ s}
\]

Bandwidth: \[
bw = \frac{1.6 \times 10^{13} \text{ bits}}{50 \text{ s}} \approx 320 \text{ Gbps}
\]

c) AWS Snowmobile: Amazon uses a truck to move data from its customers to their data center. The truck houses a container which can store 100 PB of data. Assuming the truck is transporting data from New York to an AWS data center in San Francisco (distance 4700 km) at an average speed of 100 km per hour, calculate the bandwidth and the delay.

Solution:

Delay: \[
d = \frac{4700 \text{ km}}{100 \text{ km/h}} = 47 \text{ h} = 169'200 \text{ s}
\]

Bandwidth: \[
bw = \frac{8 \times 10^{17} \text{ bits}}{169'200 \text{ s}} \approx 4.7 \text{ Tbps}
\]

\(^a1 \text{ GB} = 10^9 \text{ bytes} \quad 1 \text{ TB} = 10^{12} \text{ bytes} \quad 1 \text{ PB} = 10^{15} \text{ bytes}\)

1.5 Types of Delay

When accessing a website your data has to travel from your computer through different networks to the server on which the website resides and back.

a) You want to access the website of the University of Sydney (www.sydney.edu.au). How long does it take for a data packet to travel to the server and back (straight-line distance Zürich-Sydney 16′600 km) assuming your data packet travels at the speed of light (3×10^8 m/s)?

Solution: \[t = \frac{\text{distance}}{\text{speed}} = \frac{2 \times 1.66 \times 10^7 \text{ m}}{3 \times 10^8 \text{ m/s}} \approx 110.7 \text{ ms} \]

b) Measure the time it actually takes for a packet to travel to the server and back by issuing a ping www.sydney.edu.au in a terminal\(^a\). If you don’t have a computer available you can use our measurement:

PING sydney.edu.au (129.78.5.8):

time=328.942 ms

The calculated and measured times are not even close. Why do we observe such a difference?

Solution: The time calculated in the first task only accounts for the propagation delay (i.e., the time it takes to send the data at the speed of light) assuming a straight-line connection. In the following, we list some points which have been neglected:

- As we have seen in the lecture, there is not only the propagation, but also the transmission, processing and queuing delay.
- The cables usually don't follow the straight-line between the two locations. Hence, the real distance is longer.
- The speed of light in fiber cables is reduced by about 30%.

\(^a\)https://linux.die.net/man/8/ping
Sharing

1.6 Packet vs. Circuit Switching

Consider the network on the left. A and B are sending data towards C over a switch S and a shared link. All the links in the network have a bandwidth of 10 Mbps and you can assume that the propagation and switch processing time are negligible. For circuit switching, assume that circuit establishment and tear-down each take 50 ms. For packet switching, you can assume that switch S already knows how to reach C.

a) How long does it take if node A is sending a 50 Mbit file to C using packet switching? B sends nothing.

Solution: 5 s

b) How long does it take if node B is sending a 50 Mbit file to C using circuit switching? A sends nothing.

Solution: 5.1 s

Assume now that A and B are using packet switching and are each sending a 50 Mbit file to C at the same time.

c) What will happen if the switch has no buffer?

Solution: Some of the packets are dropped.

d) How large has the buffer to be (in Mbit) such that both senders can successfully transmit their files to C?

Solution: 50 Mbit

e) For obvious reasons, switch buffers cannot be of unlimited size. How is it possible to successfully send data over the Internet even if some packets are dropped due to full buffers?

Solution: Dropped packets are retransmitted, e.g. using the reliable transport guarantees that the TCP protocol provides (transport layer).

Finally, assume that A and B have to send data with a demand according to the diagram on the left.

f) How long does it take to send all data if A and B use circuit switching (reserving for the peak demand)?

Solution: First, node A reserves 10 Mbps bandwidth. During this time, node B cannot establish its circuit.
\[0.05 + 15 + 0.05 + 0.05 + 16 + 0.05 = 31.2 \text{ s}\]

g) How long does it take to send all data if A and B use packet switching (you can assume an unlimited buffer size on S)?

Solution: Both nodes start to send packets immediately. From 5 to 10 s, packets are buffered. Assuming the switch always uses the full link bandwidth towards C:
\[1 + 14 + 2 + 1.5 = 18.5 \text{ s}\]