
Communication Networks
Prof. Laurent Vanbever

Solution: Exercises week 4 – Reliable Transport

Reliable versus Unreliable Transport

In the lecture, you have learned how a reliable transport proto-

col can be built on top of a best-effort delivery network. How-

ever, some applications still use an unreliable transport proto-

col.

a) What are the characteristics of best-effort and of reliable

transport?

Solution:

• Best-effort delivery: There is no guarantee for pack-

ets to arrive in the correct order, correctly (bit cor-

ruption) or even arrive at all.

• Reliable transport: It provides all the above guar-

antees by making use of sequence numbers, check-

sums and acknowledgements.

b) What could be advantages of using an unreliable trans-

port protocol?

Solution:

• Better performance/less overhead since you don’t

have to wait for ACKs to arrive;

• Lightweight implementation;

• As no connection setup is required (e.g., TCP three-

way handshake), you can immediately start sending.



c) What type of applications are suitable to use unreliable

transport protocols?

Solution: Applications for which it is more important

to have “live” data than to have “complete” data. In

voice/video-calls, for example, lost packets lead to lower

quality, but delayed packets lead to distorted conversa-

tions.

d) As we will later see, the User Datagram Protocol (UDP)

only provides unreliable transport. Assume you are

forced to use a network which only supports UDP as a

transport protocol. You must transmit an important doc-

ument which eventually should be correctly transmitted.

Do you see a way to implement some of the reliable trans-

port mechanisms despite using UDP?

Solution: Yes, the reliable transport mechanisms could

be implemented by the application/in the application

layer.



Negative Acknowledgments

In the lecture, we have mainly looked at transport proto-

cols using (positive) Acknowledgments (ACKs). However, we

could also use so called Negative Acknowledgments (NAKs or

NACKs). In this case, the receiver is sending a NAK for every

packet that it did not receive. To detect lost packets, the re-

ceiver looks at the sequence numbers of all the received pack-

ets and sends NAKs for every missing sequence number. After

receiving a NAK, the sender will retransmit the corresponding

packet.

a) Assuming a network with nearly no packet loss, what

could be the main advantage of using NAKs?

Solution: The number of NAKs will be much smaller than

the number of ACKs in a normal case. Less packets in

the network could have a positive influence on the delay,

bandwidth, ...

b) Assume now that the receiver will immediately send a

NAK as soon as it detects a gap in the received packet

numbers. E.g. for the following packet number sequence

[4, 5, 7] the receiver would immediately send a NAK for

packet 6. Can you see a problem with this implementa-

tion? How could you (partially) mitigate the problem?

Solution: Reordered packets will immediately trigger a

NAK. The receiver could e.g. wait for a certain amount of

time before sending the NAK.

c) So far, NAKs look like a good alternative to (positive)

ACKs. Nonetheless, TCP – the currently most-widely used

transport protocol – is not using NAKs. There has to be a

problem. Assume that the sender is transmitting 5 pack-

ets (with sequence number 1 to 5). Find at least two se-

quences of packet or NAK losses such that the sender

wrongly assumes that the 5 packets were correctly re-

ceived.

Solution:

• [1, 2, 3] correctly received. Packet 4 and 5 were lost.

• [1, 2, 3, 5] correctly received. The NAK for packet 4

was lost.



Fairness

A B

C

D E5 Gbps 8 Gbps 2 Gbps

2.5 G
bps7 

G
bp

s

1
3

2

4

5
6

7

A network with shared links and 7 flows.

Consider the network on the left consisting of 5 nodes (A to E).

Each link has a maximal bandwidth indicated in red. 7 flows

(1 to 7) are using the network at the same time. You can as-

sume that they have to send a lot of traffic and will use what-

ever bandwidth they will get. Apply the max-min fair allocation

algorithm discussed in the lecture to find a fair bandwidth al-

location for each flow. You can use the table below. In the

top row, indicate which link is the current bottleneck. The

other rows contain the corresponding bandwidth distribution

for each flow.

Solution:

Bottleneck 
link D-E C-D B-C A-B B-D

Flow 1

A - B - C 1 1.5 2.25

Flow 2

B - C 1 1.5 2.25

Flow 3

B - C - D - E 1

Flow 4

B - C - D 1 1.5

Flow 5

B - D 1 1.5 2.25 2.75 4.25

Flow 6

A - B - D 1 1.5 2.25 2.75

Flow 7

B - D - E 1



Reliable Transport (Exam Style Question)

sender receiver

time

0

…

How long would a transfer take?

Consider a Go-Back-N sender and receiver directly connected

by a 10 Mbps link with a propagation delay of 100 milliseconds.

The retransmission timer is set to 3 seconds and the window

has a length of 4 segments.

Draw a time-sequence diagram (see left) showing the transmis-

sion of 10 segments (each segment contains 10 000 bits). An

ACK is transmitted as soon as the last bit of the corresponding

data segment is received. The size of an ACK is very small, that

means they have an negligible transmission delay.

a) Draw the time-sequence diagram for the case where there

are no losses.

Solution: The acknowledgments always point to the

next expected sequence number and not to one of the

received segment. This means that, for example, the

segment with sequence number 5 is acknowledged with

A6.

0 ms

4 ms

201 ms

104 ms

101 ms

205 ms

305 ms

302 ms

402 ms

404 ms

504 ms
503 ms

603 ms
604 ms

0
1
2
3

4
5
6
7

8
9

A1
A2
A3
A4

A5
A6
A7
A8

A9
A10



b) Draw the time-sequence diagram for the case where the

3rd and the last segment are lost once.

Solution:

0 ms

4 ms

201 ms

104 ms

101 ms

203 ms

0
1
2
3

4
5

302 ms
303 ms

402 ms
403 ms

2
3
4
5

3202 ms

3206 ms

6
7
8
9

3303 ms

3306 ms

3403 ms

3407 ms

9

3604 ms

3504 ms

3506 ms

3606 ms

6606 ms

6807 ms

6707 ms

A1
A2

A2

A2
A2

A3
A4
A5
A6

A7
A8
A9

A10



Reliable Transport2 (Exam Style Question)

On the next page you see the beginning of a communication

between two end-points using the Go-Back-N protocol with Se-

lective Repeat. Consider that the sender has infinitively many

data segments to send and they are immediately available.

We ask you to fill in the missing values in the two tables. Stop

if you either reach the bottom of the tables or the sender is

no longer able to send new data segments because its buffer is

full. Start with the blue row indicated on the left.

Note: Please read the entire question carefully!

Set-up:

• Every table row corresponds to one time-slot. The sender

and receiver can send one data segment respectively ACK

segment in every time-slot;

• Consider that the Sender buffer contains all the sent

but not yet acknowledged segments, while the Out-of-

order buffer contains all the messages which has been

received. . . out-of-order;

• If the sender receives an ACK in one time-slot, it first pro-

cesses the ACK (e.g. removes segments from the sender

buffer) and then sends the data segment for this time-

slot. Similarly, the receiver will first analyse the received

data segment and then send a corresponding ACK;

• The link between the sender and receiver is not reliable.

The first data segment with a sequence number of 3

and all data segments with a sequence number of 5 are

dropped and do not reach the receiver.

Sender behavior:

• The sender uses Selective Repeat after receiving 3 dupli-

cate ACKs. That means as soon as the sender receives an

ACK with the same sequence number for the third time, it

will retransmit the missing segment in the same time-slot

(instead of a new data segment);

• The sender can store at most 5 unacknowledged seg-

ments in its sender buffer.

Assumptions:

• You will not reach the maximal sequence number. No

overflow;

• The timeout value is very long and will not occur;

• The receiver out-of-order buffer can store an unlimited

number of segments.



Solution: The acknowledgments always point to the next expected sequence number and not to one of the received

segment. This means that, for example, the segment with sequence number 5 is acknowledged with 6.

Fill the following table starting from the blue row on the left.

Solution:
GBN - Sender 

maximal sender buffer size = 5
Sender buffer Data segment 

to send
Received ACK 

number

0 0 —

1 1 1

2 2 2

3 3 3

3, 4 4 —

3, 4, 5 5 3

3, 4, 5, 6 6 —

3, 4, 5, 6 3 3

5, 6, 7 7 5

5, 6, 7, 8 8 5

5, 6, 7, 8 5 5

5, 6, 7, 8, 9 9 —

5, 6, 7, 8, 9 — 5

GBN - Receiver
Received data 

segment
ACK number to 

send
Out-of-order 

buffer

0 1 —

1 2 —

2 3 —

— — —

4 3 4

— — 4

6 3 4, 6

3 5 6

7 5 6, 7

8 5 6, 7, 8

— — 6, 7, 8

9 5 6, 7, 8, 9

Drop first data 
segment 3 

and all data 
segments 5


