CommNet Q&A Session: Answering received questions

Georgia, Yu 23/07/24

Questions on

- Ethernet/IP
- Routing
- Transport
- Applications
- Other

Ex. 3.1 b) – Tie breaking in STP upon receiving equal-cost BDPUs to same root from diff switches

Each of switches 12 and 7 has equal cost (2) from both legitimate and attacker root switches

- are links I & P necessarily on attacker's tree?
- does it depend on attacker's MAC address?

Ex. 3.1 b) – Tie breaking in STP upon receiving equal-cost BDPUs to same root from diff switches

 Pick the BPDU with lower sender switch ID

Ex. 3.1 b) – Tie breaking in STP upon receiving equal-cost BDPUs to same root from diff switches

Each of switches 12 and 7 has equal cost (2) from both legitimate and attacker root switches

- are links I & P necessarily on attacker's tree?
- does it depend on attacker's MAC address?

- Yes, I & P are necessarily on attacker's tree, due to STP's tie-breaking (see previous slide)
- No, it does not depend on attacker's MAC, but on senders'/neighbors' switch IDs (may or may not be the MAC)
 - e.g., switch 12 receives BDPU (1, 1, 3)
 and BDPU (1, 1, 10) and picks to connect through switch 3 (3<10)

Ex. 99.12 — Does a router replace the MAC address in a packet with its own when forwarding packets from Internet to a client in local network and vice versa?

 Yes, whenever a router forwards a packet in network X, it uses its own MAC attached to network X as the src MAC in the packet header

Ex. 99.13 - Why do MACs and ports change along the path of a packet?

What will be the src/dst MACs, IPs, ports of a packet as it goes from host 1 to host 2?

	src MAC	dst MAC	src IP	dst IP	src TCP port	dst TCP port
link A	00:A1	00:A2	192.168.1.10	81.0.0.2	1337	80
link B	00:B1	00:B2	20.0.0.1	81.0.0.2	rand	80
link C	00:C1	00:C2	20.0.0.1	81.0.0.2	rand	80
		↓ ·			_	

here, MACs change across links as each link is in a **different local network** and forwarding within a network is done using MACs of local devices

in general, ports do not change along a packet's path; here, src ports **change due to NAT** (to ensure unique mappings even if multiple hosts use same local port & communicate with same remote process)

Questions on

- Ethernet/IP
- Routing
- Transport
- Applications
- Other

Ex. 1.9 - Forwarding w/ dynamic, load-based weights; Where does the "extra load" come from?

Network topology with directional link weights.

	Link Load							
	$A \rightarrow B$	$A \rightarrow C$	$B \rightarrow A$	$B \rightarrow D$	$C \rightarrow A$	$C \rightarrow D$	$D \rightarrow B$	$D \rightarrow C$
0	0	0	0	0	0	0	0	0
1	0	0	1 + e	0	1	0	e	0
2	0	0	0	1	2 + e	0	0	1 + e
_	_	_	_	_	_			

N	Next Hop		
В	С	D	
A	A	В	
D	A	С	
A	D	В	

sum load: 2 + 2e \neq sum load: 4 + 2e

The sum loads differ as the same load may **cross multiple links** on a path; e.g., in step 2, load e crosses both D->C and C->A

Ex. 1.10 c) - Configure link weights so that only Denver-Kansas uses direct link

In the solution, Denver-Kansas link has a weight of 100; is that necessary? could it be 1?

No, 100 is not necessary, but it cannot be 1: it must be ≥5, so that Indianapolis-Denver does not go through Kansas-Denver (we must ensure that all pairs that must cross at least one 100-weight link, are not using Denver-Kansas)

Explain Poisoned Reverse; Do routing tables have infeven if there is no failure?

- Poisoned Reverse
 - If the path from router z to router x goes through router y, then router z tells router y that its cost to router x is infinity
- Indeed, this results in router y installing an infinity in its routing table, which indicates that y cannot route to x through z
 (see also slides from Week 8's exercise session)

Ex. 99.2 b) - What is a virtual next hop? How is it used?

- A virtual next hop is a reference to another table (in the same router)
- We use it to reduce the number of required updates upon failure
 - for all prefixes that are routed the same,
 we can map them to the same virtual next hop,
 and the virtual next hop to a port
 - when port goes down, we only need to update the port in one entry instead of updating the port in multiple entries, one per prefix routed through the output port

Ex. 99.2 b) - What is a virtual next hop? How is it used?

prefix	output port
p1	С
p2	С
p500k	С

Ex. 4.2 d) – Forwarding misconfigurations

Where are my IP packets going?

Swisscom receives pkt for 13.1.66.1 from DT; pkt will be looping between Swisscom/2 & ETH/0 (until TTL=0)

 Why does ETH send the packet back to Swisscom? Isn't ETH's responsibility to drop packets destined to 13.1.66.1?

- Option 1): ETH is misconfigured; it shouldn't send back pkts for its /17, instead, its border router would drop it after failing to resolve IP through ARP
- Option 2): Swisscom & DT are misconfigured; they should only route towards ETH pkts for the /24

Questions on

- Ethernet/IP
- Routing
- Transport
- Applications
- Other

Difference between sockets and UDP/TCP ports

Socket

- "an operating system (OS) abstraction which provides applications with a uniform interface to the network"
- so, a socket is associated with a process,
 is created and lives in the OS, and maintains state

UDP/TCP port

socket identifier (along with IPs)
 put in the packet so that OS knows to which process to deliver data
 (see also lecture slides from Week 11)

Ex. 9.5 - Why does the TCP handshake take 1RTT and not 1.5RTT?

- TCP connection establishment takes 1.5RTTT
- But from client's perspective,
 0.5RTT of the above time is "hidden"
 - client can already send data
 on the third segment (ACK)
 i.e., after 1RTT

Timing Diagram: 3-Way Handshaking

Ex. 99.8 - Clarify when does timer reset in GBN

- Single timer that resets
 - o at each new ACK or
 - immediately after a timeout

Ex. 10.2 c) – Explain the solution

In this topology, sending 10 data segments takes 6.5RTT1

Ex. 10.2 c) - Explain the solution

Then, in the topology with the proxy, sending 10 data segments takes ?? RTT2

Ex. 10.2 c) - Explain the solution

Host A

Then, in the topology with the proxy, sending 10 data segments takes 0.5RTT2 + 6.5RTT2

If Host A was at the location of Proxy P...

Ex. 10.2 c) - Explain the solution

Then, in the topology with the proxy, sending 10 data segments takes 0.5RTT2 + 6.5RTT2

After 0.5RTT2,

- whenever Proxy P must send data to B, it has already received them from A
- Host A Proxy P communication overlaps
 with Proxy P Host B communication

Questions on

- Ethernet/IP
- Routing
- Transport
- Applications
- Other

Ex. 10.4 b) – When creating a DNS sub-domain, why add records at name servers of its *parent* domain?

- Name resolution (e.g., of fun.nsg.ee.ethz.ch) happens top-to-bottom, where the name server of a parent domain (e.g., ee.ethz.ch) points to the name server of its immediate sub-domain (nsg.ee.ethz.ch), until the name is resolved
- So, we must let the name servers responsible for each parent domain know which name servers are responsible for its immediate children and their IPs

Ex. 10.4 e) - Explain technique to scale DNS resolution when name servers of sub-domain are overloaded

DNS entries before

nsg.ee.ethz.ch NS ns1.nsg.ee.ethz.ch ns1.nsg.ee.ethz.ch A 129.132.20.1

DNS entries w/ technique 1

nsg.ee.ethz.ch NS ns1.nsg.ee.ethz.ch ns1.nsg.ee.ethz.ch A 129.132.20.1

ns1.nsg.ee.ethz.ch A 129.132.20.2

DNS entries w/ technique 2

nsg.ee.ethz.ch NS ns1.nsg.ee.ethz.ch ns1.nsg.ee.ethz.ch A 129.132.20.1

nsg.ee.ethz.ch NS ns2.nsg.ee.ethz.ch ns2.nsg.ee.ethz.ch A 129.132.20.3

Ex. 99.18 & 99.19 (email-related questions)

- Relevant for the exam?

No, except for 99.18 e)

Questions on

- Ethernet/IP
- Routing
- Transport
- Applications
- Other

Ex. 1.7 f) - Time to send data with bw reservations

Network with a shared link.

Demand distributions for node A and B.

How long does it take to send data if A and B use circuit switching (reserving for the peak demand)?

Question assumes that

- we **reserve once** at t=0
- for peak demand during entire time interval
- we know peak demands at t=0

