Mark the date:
Internet Routing Project

Group Registration
March 18, register in groups of three

Project Start
March 25

Hackathon
April 4, 18:00

Last week on
Communication Networks

Reliable Transport

1. Correctness condition
 if-and-only if again

2. Design space
 timeliness vs efficiency vs …

3. Examples
 Go-Back-N & Selective Repeat

A reliable transport design is correct if…

attempt #4
Correct!

A packet is always resent if
the previous packet was lost or corrupted

A packet may be resent at other times

Reliable Transport

1. Correctness condition
 if-and-only if again

2. Design space
 timeliness vs efficiency vs …

Examples
 Go-Back-N & Selective Repeat
To improve timeliness, reliable transport protocols send multiple packets at the same time

- add sequence number inside each packet
- add buffers to the sender and receiver
- store packets sent & not acknowledged
- store out-of-sequence packets received

Sender
Receiver

Example with a window composed of 4 packets

Using a sliding window enables flow control

Sender keeps a list of the sequence # it can send known as the sending window
Receiver also keeps a list of the acceptable sequence # known as the receiving window
Sender and receiver negotiate the window size
sending window <= receiving window

Back to the end of last week’s lecture

This week we start speaking about How the Internet actually works

This week on Communication Networks
We’ll do that layer-by-layer, bottom-up, starting with the Link layer.

How do local computers communicate?

Network adapters communicate together through the medium.

The Link Layer provides a best-effort delivery service to the Network layer.

Communication Networks
Part 2: The Link Layer

What is a link?
How do we identify link adapters?
How do we share a network medium?
What is Ethernet?
How do we interconnect segments at the link layer?

Network adapters communicate together through the medium.

The Link Layer provides a best-effort delivery service to the Network layer.

L1 Physical physical transfer of bits
L2 Link local best-effort delivery
L3 Network global best-effort delivery

Link Communication medium and Network adapter

network adapters communicate together through the medium

Network adapters communicate together through the medium

Network adapters communicate together through the medium

Communication Networks
Part 2: The Link Layer

#1 What is a link?
#2 How do we identify link adapters?
#3 How do we share a network medium?
#4 What is Ethernet?
#5 How do we interconnect segments at the link layer?

Communication Networks
Part 2: The Link Layer

What is a link?
How do we identify link adapters?
How do we share a network medium?
What is Ethernet?
How do we interconnect segments at the link layer?

Communication Networks
Part 2: The Link Layer

What is a link?
How do we identify link adapters?
How do we share a network medium?
What is Ethernet?
How do we interconnect segments at the link layer?

Communication Networks
Part 2: The Link Layer

What is a link?
How do we identify link adapters?
How do we share a network medium?
What is Ethernet?
How do we interconnect segments at the link layer?

Communication Networks
Part 2: The Link Layer

What is a link?
How do we identify link adapters?
How do we share a network medium?
What is Ethernet?
How do we interconnect segments at the link layer?

Communication Networks
Part 2: The Link Layer

What is a link?
How do we identify link adapters?
How do we share a network medium?
What is Ethernet?
How do we interconnect segments at the link layer?

Communication Networks
Part 2: The Link Layer

What is a link?
How do we identify link adapters?
How do we share a network medium?
What is Ethernet?
How do we interconnect segments at the link layer?

How do local computers communicate?

eth0

eth1
The Link Layer provides a best-effort delivery service to the Network layer, composed of 5 sub-services:

- **encoding**: represents the 0s and the 1s
- **framing**: encapsulate packet into a frame, adding header and trailer
- **error detection**: detects errors with checksum
- **error correction**: optionally correct errors
- **flow control**: pace sending and receiving node

The Link Layer provides a best-effort delivery service to the Network layer, composed of 5 sub-services:

- What is a link?
- How do we identify link adapters?
- How do we share a network medium?
- What is Ethernet?
- How do we interconnect segments at the link layer?

Medium Access Control addresses

- MAC addresses are hierarchically allocated

 34:36:3b:d2:8a:86

 The **first** 24 bits blocks are assigned to network adapter vendor by the IEEE

 34:36:3b:00:00:00

 Apple, Inc.
 1 Infinite Loop
 Cupertino CA 95014
 US

 see http://standards-oui.ieee.org/oui/oui.txt

 The **second** 24 bits block is assigned by the vendor to each network adapter

 34:36:3b:00:00:00

 assigned by Apple to my adapter
The address with all bits set to 1 identifies the broadcast address

```
ff:ff:ff:ff:ff:ff
```

enables to send a frame to all adapters on the link

By default, adapters only decapsulate frames addressed to the local MAC or the broadcast address

The promiscuous mode enables to decapsulate everything, independently of the destination MAC

Why don’t we simply use IP addresses?

- Links can support any protocol (not just IP)
- Different addresses on different kind of links
- Adapters may move to different locations cannot assign static IP address, it has to change
- Adapters must be identified during bootstrap need to talk to an adapter to give it an IP address

You need to solve two problems when you bootstrap an adapter

- Who am I?
 - MAC-to-IP binding
- How do I acquire an IP address?
 - Dynamic Host Configuration Protocol
- Who are you?
 - IP-to-MAC binding
- Given an IP address reachable on a link, How do I find out what MAC to use?
 - Address Resolution Protocol

Network adapters traditionally acquire an IP address using the Dynamic Host Configuration Protocol (DHCP)
Every connected device needs an IP address...

Host sends an "IP request" to everyone on the link using the broadcast address

DHCP server (if any) answers with an IP address

The Address Resolution Protocol (ARP) enables a host to discover the MAC associated to an IP
I want to send an IP packet to 192.168.1.10? What destination MAC do I use?!

Who has 192.168.1.10? Tell 192.168.1.9

192.168.1.10 is at 34:36:3b:d2:8a:86

Some medium are multi-access: >1 host can communicate at the same time
Some medium are multi-access: >1 host can communicate at the same time

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>collisions lead to garbled data</td>
<td>distributed algorithm for sharing the channel</td>
</tr>
</tbody>
</table>

When can each node transmit?

Some medium are multi-access:

>1 host can communicate at the same time

Essentially, there are three techniques to deal with Multiple Access Control (MAC)

Divide the channel into pieces either in time or in frequency

Take turns pass a token for the right to transmit

Random access allow collisions, detect them and then recover

Communication Networks
Part 2: The Link Layer

What is a link?
How do we identify link adapters?
How do we share a network medium?

#4 What is Ethernet?
How do we interconnect segments at the link layer?

Ethernet…

was invented as a broadcast technology each packet was received by all attached hosts

is now the dominant wired LAN technology by far the most widely used

has managed to keep up with the speed race from 10 Mbps to 400 Gbps (next goal: 1 Tbps!)

Essentially, Ethernet offers an unreliable, connectionless service

unreliable Receiving adapter does not acknowledge anything
Packets passed to the network layer can have gaps which can be filled by the transport protocol (TCP)

connectionless No handshaking between the send and receive adapter

“Traditional” Ethernet relies on CSMA/CD

CSMA/CD imposes limits on the network length

A latency d B

Suppose A sends a packet at time t
B sees an idle line just before t+d and sends a packet

Effect B would detect a collision and sends a jamming signal
A can detect the collision only after t+2d

For this reason, Ethernet imposes a minimum packet size (512 bits)

This imposes restriction on the length of the network

$$\text{Network length} = \frac{\text{min_frame_size} \times \text{speed of light}}{2 \times \text{bandwidth}}$$

= 768 meters for 100 Mbps

What about for 1 Gbps, 10 Gbps, 100 Gbps?
Modern Ethernet links interconnect exactly two hosts, in full-duplex, rendering collisions impossible!

- CSMA/CD is only needed for half-duplex communications; 10 Gbps Ethernet does not even allow half-duplex anymore.
- This means the 64 bytes restriction is not strictly needed, but IEEE chose to keep it.
- Multiple Access Protocols are still important for Wireless; important concepts to know in practice.

The Ethernet header is simple, composed of 6 fields only:

- preamble: used for synchronization (6 bytes)
- dest address: usually, IPv4 (0x0800) (6 bytes)
- src address: (6 bytes)
- type: (2 bytes)
- data: (46–1500 bytes)
- CRC: (4 bytes)

Ethernet efficiency (payload/tot. frame size) ≈ 97.5%
Maximum throughput for 100 Mbps ≈ 97.50 Mbps

Historically, people connected Ethernet segments together at the physical level using Ethernet hubs.

- Hubs work by repeating bits from one port to all the other ones.
- Hubs are now:
 - Disadvantages: simple, cheap, limited to one LAN technology, can’t interconnect different rates/formats, limited number of nodes and distances, cannot go beyond 2500m on Ethernet.
 - Advantages: efficient, each bit sent everywhere, limits aggregates throughput.

Local Area Networks are now almost exclusively composed of Ethernet switches.
Switches connect two or more LANs together at the Link layer, acting as L2 gateways.

Switches are "store-and-forward" devices, they:
- extract the destination MAC from the frame
- look up the MAC in a table (using exact match)
- forward the frame on the appropriate interface

Switches are similar to IP routers, except that they operate one layer below.

Unlike with hubs, switches enable each LAN segment to carry its own traffic.

When a frame arrives with an unknown destination:
- forward the frame out of all interfaces except for the one where the frame arrived
- Hopefully, this is an unlikely event

The advantages of switches are numerous:
- only forward frames where needed
- avoids unnecessary load on segments
- join segment using different technologies
- improved privacy
- hosts can only snoop traffic traversing their segment
- wider geographic span
- separates segments allow longer distance

Switches are plug-and-play devices, they build their forwarding table on their own.

When a frame arrives:
- inspect the source MAC address
- associate the address with the port
- store the mapping in the switch table
- launch a timer to eventually forget the mapping

In cases of misses, switches simply floods the frames.

When in doubt, shout!
While flooding enables automatic discovery of hosts, it also creates problems when the networks has loops.

Each frame leads to the creation of at least two new frames! exponential increase, with no TTL to remove looping frames...

While loops create major problems, networks need redundancy for tolerating failures!

solution
Reduce the network to one logical spanning tree
Upon failure, automatically rebuild a spanning tree

-- Radia Perlman

In practice, switches run a *distributed* Spanning-Tree Protocol (STP)

Constructing a Spanning Tree in a nutshell

A tree that must be sure to span
So packets can reach every LAN.
First, the root must be selected.
By ID, it is elected.

Least-cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
Then bridges find a spanning tree.

For this switches exchange Bridge Protocol Data Unit (BDPU) messages

Each switch iteratively sends

BPDU (Y, d, X) to each neighboring switch
the switch ID
it considers as root
the # hops to reach it

 switches
elect a root switch
the one with the smallest identifier
determine if each interface is on the shortest-path from the root and disable it if not

initially Each switch proposes itself as root
sends (X,0,X) on all its interfaces
Upon receiving (Y, d, X), checks if Y is a better root
if so, considers Y as the new root, flood updated message
Switches compute their distance to the root, for each port simply add 1 to the distance received, if shorter, flood
Switches disable interfaces not on shortest-path

Algorhyme

I think that I shall never see
A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.

A tree that must be sure to span
So packets can reach every LAN.
First, the root must be selected.
By ID, it is elected.

Least-cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
Then bridges find a spanning tree.

...
Upon receiving BPDUs from a neighboring switch, pick the BPU with the lowest port ID (e.g., port 2 < port 3). Upon receiving BPDUs from switches with equal cost, pick the BPU with the lower switch sender ID (tie-breaking).

To be robust, STP must react to failures:

- Any switch, link, or port can fail, including the root switch.
- Root switch continuously sends messages announcing itself as the root (1,0,1), others forward it.
- Failures are detected through timeout (soft state); if no word from root in X times out and claims to be the root.

Next week on Communication Networks:
Ethernet (end) + Internet Protocol (IP)

Mark the date:
Internet Routing Project

- Group Registration: March 18, register in groups of three
- Project Start: March 25
- Hackathon: April 4, 18:00

Communication Networks
Spring 2019

Source: Boardwatch Magazine

ETH Zürich (D-ITET)
Alexander Dietmüller
nsg.ee.ethz.ch

Source: Boardwatch Magazine