Communication Networks Spring 2022

Tobias Bühler nsg.ee.ethz.ch

ETH Zürich (D-ITET) May 16 2022 Two important pillars of today's Internet

Internet-wide routing Covered in the first project

Reliable transport Main focus of the second project

Implement your own Reliable Transport Protocol

recover from packet loss and reordering

Implement your own Reliable Transport Protocol

recover from packet loss and reordering

Part 1	Complete a simple Go-Back-N implementation
	Retransmit all packets after a timeout
Part 2	Add support for Selective Repeat
	Fast retransmission after duplicated ACKs
Part 3	Add support for Selective Acknowledgements (SACK)
	SACK contains blocks of correctly received segments

Proposed timetable

Part 1	Complete a simple Go-Back-N implementation
20.05.2022	Retransmit all packets after a timeout
Part 2	Add support for Selective Repeat
27.05.2022	Fast retransmission after duplicated ACKs
Part 3	Add support for Selective Acknowledgements (SACK)
03.06.2022	SACK contains blocks of correctly received segments

We use a custom header for the GBN protocol

	1	5	1	1	1	6	
Mandatory header	т	Padding	F	S	Segment Length		
		Header Lengt	h		Sequence Number	Window	
Optional header		Block Length)		Left edge 1st block	Length 1st block	
		Padding			Left edge 2nd block	Length 2nd block	
		Padding			Left edge 3rd block	Length 3rd block	

24 bits

Payload

The assignment text on the GitLab wiki contains a lot more details

You will implement a GBN sender and receiver

Using Python as programming language

We already provide you with a skeleton implementation Have a look at the comments in the skeleton files

Make sure that you follow the instructions carefully Interoperability will be difficult otherwise A new VM and GitLab repository wait for you

let us know if you have no access

The skeleton files are already on your VM

Use git (preferred) or scp to transfer files

Your group numbers changed

Important: VM port number is **2000** + group number

Use the password from your GitLab repository

Let's see how the you can execute your GBN implementation and test it

There are multiple options to test your implementation

Run your sender against your receiver

This should be your main focus

Use the various tests in the test framework

Will allow you to test specific features

Run against code of another group

The test framework handles that as well

We also generate an interoperability matrix on our website

Your project grade counts as 10% to your final grade

Project grade =					
Test performance (public)	Computed based on the amount of points you get TEST_POINTS / 400 * 4.5 + 1				
+	This way you can get up to a 5.5 Running all the tests will show you this grade				
Additional tests (secret)	We will run your submitted code through additional tests They are not available to you during the project				
	In addition we check your code for basic comments				
	This way you can get the remaining 0.5 grade points				

We will check your submitted code for plagiarism using automated tools

Do not copy code from other groups

Or any other project-related sources

We had multiple clear cases in the past

You will immediately receive a one as final grade

If you have questions

Ask on Slack or send us an email

Please use the **#transport_project** channel

We will announce additional Q&A sessions if needed

During online sessions we will also be available for calls

Follow the exercise session this Thursday

More demos and information about the test framework

No exercise session during the second week

Due to Ascension day

ETH is closed

Soon we will announce an additional in-person session More information follows via email and Slack

Final comments

Deadline: June 03 2022, at midnight

Submit your code and decl. of originality via GitLab

Read the assignment text carefully

Make sure you follow all the specifications

You do **not** have to write a report

But don't forget to comment your code