Communication Networks

Prof. Laurent Vanbever

Last week on
Communication Networks

Forwarding vs Routing summary		
	forwarding	routing
goal	directing packet to an outgoing link	computing the paths packets will follow
scope	local	network-wide
implem.	hardware usually	software usually
timescale	nanoseconds	milliseconds (hopefully)

Producing valid routing state is harder
but doable

Communication Networks
Spring 2022

Laurent Vanbever
nsg.ee.ethz.ch

ETH Zürich (D-ITET)
14 March 2022

Jennifer Rexford

Communication Networks
Part 2: Concepts

How do you guide IP packets
from a source to destination?

Essentially,
there are three ways to compute valid routing state

	Intuition	Example
\#1	Use tree-like topologies	Spanning-tree
\#2	Rely on a global network view	Link-State
		SDN
\#3	Rely on distributed computation	Distance-Vector BGP

This week on

Communication Networks

We'll do that layer-by-layer, bottom-up,

starting with the Link layer

How do local computers communicate?

Communication Networks

Part 2: The Link Layer

```
\#1 What is a link?
```

How do we identify link adapters?
How do we share a network medium?

What is Ethernet?
How do we interconnect segments at the link layer?

Network adapters communicate together through the medium

Network adapters communicate
together through the medium

The Link Layer provides a best-effort delivery service
to the Network layer, composed of 5 sub-services
to the Network layer, composed of 5 sub-services

encoding	represents the 0 s and the 1 s
framing	encapsulate packet into a frame adding header and trailer
error detection	detects errors with checksum
error correction	optionally correct errors
flow control	pace sending and receiving node

400 Gbps adapters are around the corner

source: [NVIDIA ConnectX-7 (InfiniBand)]

The Link Layer provides a best-effort delivery service to the Network layer

L3	Network	global best-effort delivery
L2	Link	local best-effort delivery
L1	Physical	physical transfer of bits

As of March 2021,
state-of-the-art Ethernet adapters clock at 200 Gbps

215 million pkt/sec
sub 0.8 usec latency
PCle Gen 4.0

source: [Mellanox ConnectX-6]

400 Gbps Ethernet switches are already on the market


```
MAC addresses...
```

MAC addresses are hierarchically allocated

34:36:3b:d2:8a:86

The second 24 bits block is assigned by the vendor to each network adapter

By default, adapters only decapsulates frames addressed to the local MAC or the broadcast address

MAC addresses..

dentify the sender \& receiver adapters
used on a link
are uniquely assigned
hard-coded into the adapter when built
use a flat space of 48 bits
allocated hierarchically

The first 24 bits blocks are assigned to network adapter vendor by the IEEE
$34: 36: 3 b: d 2: 8 a: 86$

Apple, Inc.
1 Infinite Loop
Cupertino CA 95014
US
see http://standards-oui.ieee.org/oui/oui.txt

The address with all bits set to 1
identifies the broadcast address

ff:ff:ff:ff:ff:ff

enables to send a frame to
all adapters on the link

The promiscuous mode enables to decapsulate everything, independently of the destination MAC

Why don't we simply use IP addresses?

Links can support any protocol (not just IP) different addresses on different kind of links

Adapters may move to different locations cannot assign static IP address, it has to change

Adapters must be identified during bootstrap need to talk to an adapter to give it an IP address

We need to solve two problems
when we bootstrap an adapter

Who am I?
How do I acquire an IP address?
MAC-to-IP binding

Who are you?
Given an IP address reachable on a link,
IP-to-MAC binding

Network adapters traditionally acquire an IP address using the Dynamic Host Configuration Protocol (DHCP)

Who am I?
MAC-to-IP binding

Who are you?
IP-to-MAC binding

How do I acquire an IP address?
Dynamic Host Configuration Protocol

Given an IP address reachable on a link, How do I find out what MAC to use?

Address Resolution Protoco

Every connected device needs an IP address...

Newark Airport..
source: http://i.imgur.com/m1SQa6W.jpg

Host sends an "IP request" to everyone on the link using the broadcast address

DHCP server (if any)
answers with an IP address

The Address Resolution Protocol (ARP) enables

 a host to discover the MAC associated to an IP

Communication Networks
Part 2: The Link Layer

What is a link?

How do we identify link adapters?
\#3 How do we share a network medium?

What is Ethernet?

How do we interconnect segments at the link layer?

Some medium are multi-access:
>1 host can communicate at the same time

Essentially, there are three techniques to deal with Multiple Access Control (MAC)

Divide the channel into pieces
either in time or in frequency

Take turns
pass a token for the right to transmit

Random access
allow collisions, detect them and then recover

Some medium are multi-access:
>1 host can communicate at the same time

Some medium are multi-access:
>1 host can communicate at the same time

Problem
collisions lead
to garbled data

Solution
distributed algorithm
for sharing the channel
When can each node transmit?

Communication Networks
Part 2: The Link Layer

What is a link?

How do we identify link adapters?

How do we share a network medium?
\#4
What is Ethernet?

How do we interconnect segments at the link layer?

```
Ethernet...
was a broadcast technology
each packet was received by all attached hosts
is the dominant wired LAN technology
by far the most widely used
kept up with the speed race
from 10 Mbps to 400 Gbps (next: 800 Gbps and 1.6 Tbps!)
```


"Traditional" Ethernet relies on CSMA/CD

For this reason, Ethernet imposes a minimum packet size (512 bits)

This imposes restriction on the length of the network

```
Network length
    = min_frame_size * speed of light
[m]
    = 768 meters for 100 Mbps
```

What about for $1 \mathrm{Gbps}, 10 \mathrm{Gbps}, 100 \mathrm{Gbps}$?

The Ethernet header is simple, composed of 6 fields only

Modern Ethernet links interconnects exactly two hosts, in full-duplex, rendering collisions impossible!

CSMA/CD is only needed for half-duplex communications 10 Gbps Ethernet does not even allow half-duplex anymore

This means the 64 bytes restriction is not strictly needed but IEEE chose to keep it

Multiple Access Protocols are still important for Wireless important concepts to know in practice

Communication Networks

Part 2: The Link Layer

What is a link?

How do we identify link adapters?

How do we share a network medium?

What is Ethernet?
\#5 How do we interconnect segments at the link layer?

Hubs work by repeating bits from one port
to all the other ones

Local Area Networks are now almost exclusively
composed of Ethernet switches

Historically, people connected Ethernet segments together at the physical level using Ethernet hubs

Hubs are now
advantages
simple, cheap
inefficient, each bit is sent everywhere
limits the aggregates throughput
limited to one LAN technology
can't interconnect different rates/formats
limited number of nodes and distances cannot go beyond 2500 m on Ethernet

Switches connect two or more LANs together at the Link layer, acting as L2 gateways

Switches are "store-and-forward" devices, they

- extract the destination MAC from the frame
- look up the MAC in a table (using exact match)
- forward the frame on the appropriate interface

Switches are similar to IP routers,
except that they operate one layer below

Unlike with hubs,
switches supports concurrent communication

The advantages of switches are numerous

```
advantages
only forward frames where needed
avoids unnecessary load on segments
join segment using different technologies
improved privacy
host can just snoop traffic traversing their segment
wider-geographic span
separates segments allow longer distance
```

Switches are "store-and-forward" devices, they

- extract the destination MAC from the frame
- look up the MAC in a table (using exact match)
- forward the frame on the appropriate interface

In cases of misses,
switches simply floods the frames

```
When a frame arrives with an unknown destination
```

- forward the frame out of all interfaces
except for the one where the frame arrived
Hopefully, this is an unlikely event

when in doubt, shout!

Switches are plug-and-play devices,
they build their forwarding table on their own

Switches are plug-and-play devices, they build their forwarding table on their own

When a frame arrives

- inspect the source MAC addres
- associate the address with the port
- store the mapping in the switch table
- launch a timer to eventually forget the mapping

While flooding enables automatic discovery of hosts, it also creates problems when the networks has loops

Each frame leads to the creation of at least two new frames!
exponential increase, with no TTL to remove looping frames.

In practice, switches run
a distributed Spanning-Tree Protocol (STP)

Algorhyme
think that I shall never see graph more lovely than a tree. A tree whose crucial property loop-free connectivity

A tree that must be sure to span So packets can reach every LAN. First, the root must be selected. By ID, it is elected.

Least-cost paths from root are traced. in the tree, these paths are placed A mesh is made by folks like me, Then bridges find a spanning tree.

Constructing a Spanning Tree in a nutshell

Switches...

elect a root switch
the one with the smallest identifier
determine if each interface is
on the shortest-path from the root
disable it if not

Apply the algorithm starting with switch 4

To be robust,
STP must react to failures

Any switch, link or port can fail
including the root switch

Root switch continuously sends messages
announcing itself as the root ($1,0,1$), others forward it

Failures is detected through timeout (soft state)
if no word from root in X, times out and claims to be the root

As the network scales,
network operators like to segment their LANs

Why?
Improves security
smaller attack surface (visibility \& injection)

Improves performance
limit the overhead of broadcast traffic (e.g. ARP)

Improves logistics
separates traffic by role (e.g. staff, students, visitors)

Enters "Virtual Local Area Networks" (VLANs)

Definition

A VLAN logically identifies
a set of ports attached to
one (or more) Ethernet switches,
forming one broadcast domain

Switches need configuration tables telling them which VLANs are accessible via which interfaces

The Local Area Networks we have considered so far define single broadcast domains

If one user broadcast a frame,
every other user receives it

Organizational changes are too frequent to segment networks purely physically-rewiring is a major pain

What about doing this in software though?

A VLAN identifies a set of ports attached to one or more Ethernet switches

Switches need configuration tables telling them which VLANs are accessible via which interfaces

Consider that A sends a broadcast frame
say, an ARP request

To identify VLAN, switches add new header when forwarding traffic to another switch

802.1q Header (4 bytes)
(4 bits missing)

Access links belong to one VLAN
they do not carry 802.1q headers

That frame should be received by all staff members:
i.e. C and F, and only them

With VLANs, Ethernet links are divided in two sets:
access and trunks (inter switches) links

Trunk links carry traffic for more than one VLAN and as such carry 801.1q tagged frames

Each switch runs
one MAC learning algorithm for each VLAN

When a switch receives a frame with an unknown or a broadcast destination,
it forwards it over all the ports that belong to the same VLAN

When a switch learns a source address on a port
it associates it to the VLAN of this port and only uses it when forwarding frames on this VLAN

Switches can also compute per-VLAN spanning-tree allowing a distinct SPT for each VLAN
allow the operators to use more of their links

Any communication between the red hosts on switch 5 and 6 need to go via switch $1 \ldots$

Now any communication between the red hosts on switch 5 and 6 go via the direct link

Communication Networks
Spring 2022

Laurent Vanbever
nsg.ee.ethz.ch

ETH Zürich (D-ITET)
14 March 2022

