Communication Networks

Prof. Laurent Vanbever

Communication Networks
Part 2: Concepts

Communication Networks

Laurent Vanbever
nsg.ee.ethz.ch

ETH Zürich (D-ITET)
28 February 2022

Materials inspired from Scott Shenker \& Jennifer Rexford

Communication Networks
Part 2: Concepts

reliable delivery

How do you guide IP packets from a source to destination? on top of best-effort delivery?

Think of IP packets as envelopes

Like an envelope,
packets have a header

Heade

Like an envelope,
packets have a payload

Payload

The header contains the metadata
needed to forward the packet

of the communication

Routers forward IP packets hop-by-hop towards their destination

Let's zoom in on what is going on between two adjacent routers

Upon packet reception, routers locally look up their forwarding table to know where to send it next

Forwarding decisions necessarily depend on the destination, but can also depend on other criteria

criteria	destination	mandatory (why?)
source	requires n^{2} state	
input port	traffic engineering	

any other header

With source- \& destination-based routing,
paths from different sources can differ

With destination-based routing,
paths from different source coincide once they overlap

Here is an example of a spanning tree
for destination X

In the rest of the lecture,
we'll consider destination-based routing

```
the default in the Internet
```


Think of the control-plane as the router's brain

Roles
Routing

Configuration

Statistic

While forwarding is a local process,
routing is inherently a global process

How can a router know
where to direct packets
if it does not know what
the network looks like?

In addition to a data-plane
routers are also equipped with a control-plane
Where are these forwarding tables coming from?

LOSA IP router			HOUS IP router		
1F\#2		1F*4	\|F\#2		1F*4
	Data-Plane			Data-Plane	
1F*1		1F*3	1F**		1F\#3
Forwarding table			Forwarding table		
destination output Laurent IF\#1 Google IF\#4			destination output Laurent IF\#1 Coogle IF\#3		

Routing is the control-plane process that computes and populates the forwarding tables

Forwarding vs Routing
summary

	forwarding	routing
goal	directing packet to an outgoing link	computing the paths packets will follow
scope	local	network-wide
implem.	hardware usually	software usually
timescale	nanoseconds	milliseconds (hopefully)

The goal of routing is to compute valid global forwarding state

Definition a global forwarding state is valid if
it always delivers packets
to the correct destination

A global forwarding state is valid if and only if there are no dead ends

\square
question 1 How do we verify that a forwarding state is valid?
uestion 2 How do we compute valid forwarding state?

Verifying that a routing state is valid is easy

simple algorithm
Mark all outgoing ports with an arrow
for one destination
Eliminate all links with no arrow

State is valid iff the remaining graph is a spanning-tre

sufficient and necessary condition

Theorem a global forwarding state is valid if and only if
there are no dead ends
no outgoing port defined in the table
there are no loops
packets going around the same set of nodes

A global forwarding state is valid if and only if there are no forwarding loops

question 1 How do we verify that a forwarding state is valid?
How do we compute valid forwarding state?

Given a graph with the corresponding forwarding state

Mark all outgoing ports with an arrow

The result is not a spanning-tree
The routing state is not valid

Eliminate all links with no arrow

The result is a spanning tree.
This is a valid routing state

Eliminate all links with no arrow

question 2
How do we compute valid forwarding state?

Producing valid routing state is harder

prevent dead ends

easy
prevent loops hard

Producing valid routing state is harder
but doable

```
prevent dead ends
```

 easy
 Existing routing protocols differ in how they avoid loops

Essentially,
there are three ways to compute valid routing state
\#1

Use tree-like topologies	Spanning-tree
Rely on a global network view	Link-State
	SDN
Rely on distributed computation	Distance-Vector

BGP

In practice,
there can be many spanning-trees for a given topology

Essentially,
there are three ways to compute valid routing state

	Intuition	Example
\#1	Use tree-like topologies	Spanning-tree
\#2	Rely on a global network view	Link-State
		SDN
\#3	Rely on distributed computation	Distance-Vector

The easiest way to avoid loops is to route traffic on a loop-free topology
\(\left.\begin{array}{ll}simple algorithm \& Take an arbitrary topology

Build a spanning tree and

ignore all other links\end{array}\right\}\) Done! | Why does it work? |
| :--- | | Spanning-trees have only one path |
| :--- |
| between any two nodes |

When a packet arrives,
simply send it on all ports

The issue is that nodes do not know their respective locations

Nodes can learn how to reach nodes by remembering where packets came from

intuition

flood packet from node A entered switch X on port 4
then
switch X can use port 4
to reach node A

All the green nodes learn how to reach A

There is no need for flooding here as the position of A is already known by everybody

Routing by flooding on a spanning-tree
in a nutshell

Flood first packet to node you're trying to reach
all switches learn where you are

When destination answers, some switches learn where it is
some because packet to you is not flooded anymore

The decision to flood or not is done on each switch depending on who has communicated before

Spanning-Tree in practice

used in Ethernet

advantages	disadvantages
plug-and-play	
configuration-free	mandate a spanning-tree eliminate many links from the topology
automatically adapts	slow to react to failures
to moving host	host movement

If each router knows the entire graph,
it can locally compute paths to all other nodes

Dijkstra maintains two data structures:
S and D

$$
\begin{array}{cl}
\text { S } & \begin{array}{l}
\text { the set of vertices whose } \\
\text { shortest path is known }
\end{array} \\
\mathrm{D}(\mathrm{~V}) & \begin{array}{l}
\text { the current estimate of } \\
\text { the shortest path cost } \\
\text { dowards vertex } v
\end{array}
\end{array}
$$

Each iteration Dijkstra adds 1 node to S (the closest one) before updating the distances to reach the others nodes

Loop
while not all nodes in S :
add w with the smallest $\mathrm{D}(w)$ to S update $\mathrm{D}(v)$ for all adjacent v not in S : $D(v)=\min \{D(v), D(w)+c(w, v)\}$

Essentially,
there are three ways to compute valid routing state

	Use tree-like topologies	Spanning-tree
\#2	Rely on a global network view	Link-State SDN
		Distance-Vector BGP

Once a node u knows the entire topology,
it can compute shortest-paths using Dijkstra's algorithm

Initialization	Loop
$S=\{u\}$	while not all nodes in S :
for all nodes v :	add w with the smallest $\mathrm{D}(w)$ to S
if (v is adjacent to u):	update $\mathrm{D}(v)$ for all adjacent v not in S :
$\mathrm{D}(\mathrm{v})=\mathrm{c}(u, v)$	$D(v)=\min \{\mathrm{D}(v), \mathrm{D}(w)+\mathrm{c}(w, v)\}$
else:	
$D(v)=\infty$	

The initialization phase defines
the original data structures content

```
    u}\mathrm{ is the node running the algorithm
    S={u}
    for all nodes }v\mathrm{ :
        if (v is adjacent to }u\mathrm{ ):
        D(v)=c(u,v)-c(u,v) is the weight of the link
    ele: connecting }u\mathrm{ and }
        D(v)=\infty
            D}(v)\mathrm{ is the smallest distance
            currently known by }u\mathrm{ to reach v
```

Let's compute the shortest-paths
from u

S only contains u itself and
D is initialized based on u's weight

	$D()=$.	$S=\{u\}$
,	A 3	
$1{ }^{1} 4$	B $\quad \infty$	
${ }_{5}$	C $\quad \infty$	
2 E 1	D $\quad \infty$	
	E 2	
4 c	F $\quad \infty$	
	G $\quad \infty$	

Here is the final state

This algorithm has a $\mathrm{O}\left(n^{2}\right)$ complexity
where n is the number of nodes in the graph
iteration \#1 search for minimum through n nodes
iteration $n \quad$ search for minimum through 1 node

$$
\frac{n(n+1)}{2} \text { operations }=>0\left(n^{2}\right)
$$

From the shortest-paths,
u can directly compute its forwarding table

Forwarding table	
destination	next-hop
A	A
B	A
C	E
D	A
E	E
F	E
G	E

Initially,
routers only know their ID and their neighbors

D only knows,
it is connected to B and C
along with the weights to reach them (by configuration)

This algorithm has a $\mathbf{O}\left(n^{2}\right)$ complexity
where n is the number of nodes in the graph

Better implementations rely on a heap
to find the next node to expand,
bringing down the complexity to $\mathrm{O}(n \log n)$

To build this global view
routers essentially solve a jigsaw puzzle

Each routers builds a message (known as Link-State) and floods it (reliably) in the entire network

D's Advertisement
edge (D, B); cost: 1 edge (D,C); cost: 4

Dijkstra will always converge to a unique stable state when run on static weights

```
cf. exercice session
for the dynamic case
```

Essentially,
there are three ways to compute valid routing state

Use tree-like topologies	Spanning-tree	
	Rely on a global network view	Link-State
\#3	Rely on distributed computation	Distance-Vector

Instead of locally compute paths based on the graph, paths can be computed in a distributed fashion

Let $\mathrm{d}_{x}(y)$ be the cost of the least-cost path known by x to reach

Let's compute the shortest-path

To unfold the recursion,
let's start with the direct neighbor of D

The values computed by a node u depends on what it learns from its neighbors (A and E)

$d x(y)=\min \{c(x, v)+d v(y)\}$
over all neighbors v
$\mathrm{d}_{u}(D)=\min \left\{c(u, \mathrm{~A})+\mathrm{d}_{A}(D)\right.$, $\left.\mathrm{c}(u, \mathrm{E})+\mathrm{d}_{\mathrm{E}}(\mathrm{D})\right\}$

Let d (y) be the cost of the least-cost path known by x to reach y

Each node bundles these distances
into one message (called a vecton
that it repeatedly sends to all its neighbors
from u to D

B and C announce their vector to their neighbors, enabling A to compute its shortest-path

$$
\begin{aligned}
& \mathrm{d} \in(D)= \min \{1 \\
&+\mathrm{d} \subset(D), \\
& 4+\mathrm{d} C(D), \\
&2+\mathrm{d} u(D)\} \\
&=5
\end{aligned}
$$

As before, u can directly infer its forwarding table by directing the traffic to the best neighbor
the one which advertised the smallest cost

Communication Networks
Spring 2022

Laurent Vanbever
nsg.ee.ethz.ch

ETH Zürich (D-ITET)
28 February 2022

