
Communication Networks

Prof. Laurent Vanbever

Communication Networks | Mon 28 Feb 2022 1 of 15

Communication Networks

Spring 2022

ETH Zürich (D-ITET)

Laurent Vanbever

28 February 2022

Materials inspired from Scott Shenker & Jennifer Rexford

nsg.ee.ethz.ch

routing
reliable

delivery

Communication Networks

Part 2: Concepts

routing
reliable

delivery

How do you guide IP packets

from a source to destination?

How do you ensure reliable transport

on top of best-effort delivery?

Communication Networks

Part 2: Concepts

routing
reliable

delivery

How do you guide IP packets

from a source to destination?

Packet

Think of IP packets as envelopes

Like an envelope,
packets have a header

Header

Like an envelope,
packets have a payload

Payload

Communication Networks | Mon 28 Feb 2022 2 of 15

destination

source

Identify the

of the communication

src address

dst address

The header contains the metadata
needed to forward the packet

The payload contains
the data to be delivered

Payload

Could you please send me an

SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS

Routers forward IP packets hop-by-hop
towards their destination

ATLA

SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS

Laurent

Google

src

dst

ATLA

SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS
Laurent

Google

src

dst

ATLA

SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS Laurent

Google

src

dst

ATLA

SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS

Laurent

Google

src

dst
ATLA

SEAT

LOSA

SALT

KANS

CHIC

NEWY

HOUS

Laurent

Google

src

dst

ATLA

Communication Networks | Mon 28 Feb 2022 3 of 15

SEAT

LOSA

SALT

KANS

CHIC

HOUS

Laurent

Google

src

dst

NEWY

WASH

ATLA

SEAT

LOSA

SALT
CHIC

HOUS

ATLA

WASH

NEWY

KANS

Let’s zoom in on what is going on
between two adjacent routers

 Data-Plane Data-Plane

IF#1

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA HOUS

 Data-Plane Data-Plane

IF#1

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

Laurent

Google

src

dst

Forwarding table

Laurent

IF#4

IF#1

destination output

Google

Upon packet reception, routers locally look up
their forwarding table to know where to send it next

Packet

LOSA HOUS

 Data-Plane Data-Plane

IF#1

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

Laurent

IF#4

IF#1

Forwarding table

destination output

Google

Laurent

Google

src

dst

Packet

LOSA HOUS

Here, the packet should be directed to IF#4

 Data-Plane Data-Plane

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA IP router HOUS IP router

IF#1

Laurent

Google

src

dst

 Data-Plane Data-Plane

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA IP router HOUS IP router

Laurent

Google

src

dst

IF#1

Laurent

IF#3

IF#1

Forwarding table

destination output

Google

Forwarding is repeated at each router,
until the destination is reached

 Data-Plane Data-Plane

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA IP router HOUS IP router

Laurent

Google

src

dst

IF#1

Laurent

IF#3

IF#1

Forwarding table

destination output

Google

Communication Networks | Mon 28 Feb 2022 4 of 15

 Data-Plane Data-Plane

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA IP router HOUS IP router

Laurent

Google

src

dst

IF#1

Laurent

IF#3

IF#1

Forwarding table

destination output

Google

 Data-Plane Data-Plane

IF#2

IF#3 IF#1 IF#3

IF#4

LOSA IP router HOUS IP router

Laurent

Google

src

dst

IF#1

IF#4 IF#2

Forwarding decisions necessarily depend on

the destination, but can also depend on other criteria

destination

source

criteria mandatory (why?)

+any other header

input port

requires n2 state

traffic engineering

destination

source

Let’s compare these two

A

B

X

With source- & destination-based routing,
paths from different sources can differ

dest output

EastX

src

A

South-EastXB

With destination-based routing,
paths from different source coincide once they overlap

A

B

X

dest output

EastX

Once path to destination meet,

they will never split

Set of paths to the destination

produce a spanning tree rooted at the destination:

cover every router exactly once

only one outgoing arrow at each router

Here is an example of a spanning tree

for destination X

X

Communication Networks | Mon 28 Feb 2022 5 of 15

In the rest of the lecture,

we’ll consider destination-based routing

the default in the Internet

LOSA IP router HOUS IP router

Laurent

IF#3

IF#1

Forwarding table

destination output

Google

 Data-Plane Data-Plane

IF#1

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

Laurent

IF#4

IF#1

Forwarding table

destination output

Google

Where are these forwarding tables coming from?

 Data-Plane Data-Plane Data-Plane Data-Plane

 Control-Plane Control-Plane

In addition to a data-plane,

routers are also equipped with a control-plane

Routing

Configuration

Statistics

…

Roles

Think of the control-plane as the router’s brain

Laurent

IF#3

IF#1

destination output

Google

Routing is the control-plane process that
computes and populates the forwarding tables

Laurent

IF#4

IF#1

destination output

Google

 Control-PlaneControl-Plane

How can a router know

where to direct packets

if it does not know what

the network looks like?

While forwarding is a local process,

routing is inherently a global process

Forwarding vs Routing

summary

forwarding routing

directing packet to

an outgoing link

local network-wide

computing the paths

packets will follow

nanoseconds milliseconds

(hopefully)

goal

scope

timescale

implem. hardware

usually

software

usually

Communication Networks | Mon 28 Feb 2022 6 of 15

The goal of routing is to compute

valid global forwarding state

a global forwarding state is valid if

it always delivers packets

to the correct destination

Definition

sufficient and necessary condition

a global forwarding state is valid if and only if

no outgoing port defined in the table

there are no dead ends

packets going around the same set of nodes

there are no loops

Theorem

A global forwarding state is valid if and only if

there are no dead ends

A

B

X

dest output

EastX

dest output

WestA

drops all traffic to X

A global forwarding state is valid if and only if

there are no forwarding loops

A

B

X

dest output

EastX

dest output

WestX

bounces traffic back

question 1

question 2

How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?

How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?

question 1

Mark all outgoing ports with an arrow

Eliminate all links with no arrow

State is valid iff the remaining graph

is a spanning-tree

simple algorithm

for one destination

Verifying that a routing state is valid is easy

X

dest

X

dest output

East

dest output

WestX

Given a graph with the corresponding forwarding state

Communication Networks | Mon 28 Feb 2022 7 of 15

X

Mark all outgoing ports with an arrow

X

Eliminate all links with no arrow

X X

The result is a spanning tree.

This is a valid routing state

X

Mark all outgoing ports with an arrow

X

Eliminate all links with no arrow

X

The result is not a spanning-tree.

The routing state is not valid

loop

dead-end

question 2

How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?

Communication Networks | Mon 28 Feb 2022 8 of 15

Producing valid routing state is harder,

but doable

prevent dead ends

easy

prevent loops

hard

This is the question

you should focus on

prevent dead ends

easy

prevent loops

hard

Producing valid routing state is harder

but doable

prevent loops

hard

Existing routing protocols differ in

how they avoid loops

Essentially,

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

#2

#3

BGP

SDN

Intuition Example

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

BGP

SDN

Essentially,

there are three ways to compute valid routing state

The easiest way to avoid loops is to route traffic

on a loop-free topology

Take an arbitrary topology

Build a spanning tree and

ignore all other links

Done!

simple algorithm

Why does it work? Spanning-trees have only one path

between any two nodes

In practice,

there can be many spanning-trees for a given topology

Spanning-Tree #1

Communication Networks | Mon 28 Feb 2022 9 of 15

Spanning-Tree #2 Spanning-Tree #3

literally just flood

the packets everywhere

Once we have a spanning tree,

forwarding on it is easy

A

B

When a packet arrives,

simply send it on all ports

While flooding works,

it is quite wasteful

A

B

Useless transmissions

The issue is that nodes do not know their

respective locations

Nodes can learn how to reach nodes

by remembering where packets came from

then

intuition

switch X can use port 4

to reach node A

flood packet from node A

entered switch X on port 4

if A

B

Communication Networks | Mon 28 Feb 2022 10 of 15

A

Node A can be reached

through this port

B

A

B

A

B

All the green nodes learn how to reach A

A

All the green nodes learn how to reach A

B

A

B

B answers back to A

enabling the green nodes to also learn where B is

A

B

There is no need for flooding here

as the position of A is already known by everybody

A

B

Learning is topology-dependent

The blue nodes only know how to reach A (not B)

Routing by flooding on a spanning-tree

in a nutshell

When destination answers, some switches learn where it is

some because packet to you is not flooded anymore

Flood first packet to node you’re trying to reach

all switches learn where you are

The decision to flood or not is done on each switch

depending on who has communicated before

Communication Networks | Mon 28 Feb 2022 11 of 15

Spanning-Tree in practice

used in Ethernet

advantages disadvantages

plug-and-play

configuration-free

automatically adapts

to moving host

slow to react to failures

mandate a spanning-tree

eliminate many links from the topology

slow to react to host movement

Essentially,

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#2

BGP

SDN

If each router knows the entire graph,  

it can locally compute paths to all other nodes

Initialization Loop

Once a node u knows the entire topology,  

it can compute shortest-paths using Dijkstra’s algorithm

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S:

D(v) = min{D(v), D(w) + c(w,v)}

while not all nodes in S:S = {u}

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v)

else:

D(v) = ∞

Dijkstra maintains two data structures:

S and D

S

D(v)

successors

distances

the set of vertices whose

shortest path is known

the current estimate of

the shortest path cost

towards vertex v

The initialization phase defines

the original data structures content

for all nodes v:

if (v is adjacent to u):

else:

S = {u}

u is the node running the algorithm

D(v) = c(u,v) c(u,v) is the weight of the link 

connecting u and v

D(v) = ∞

D(v) is the smallest distance  

currently known by u to reach v

Each iteration Dijkstra adds 1 node to S (the closest one)

before updating the distances to reach the others nodes

Loop

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S:

D(v) = min{D(v), D(w) + c(w,v)}

while not all nodes in S:

2 1

1

2

1
4

5

4 3

Let’s compute the shortest-paths

from u

u

3

A B

C D

E F

G

Communication Networks | Mon 28 Feb 2022 12 of 15

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

Initialization

S = {u}

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v)

else:

D(v) = ∞

2 1

1

2

1
4

5

4 3

S only contains u itself and

D is initialized based on u’s weight

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

S = {u}

u

2 1

1

2

1
4

5

4 3

3

A B

C D

E F

G

u

Loop

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S:

D(v) = min{D(v), D(w) + c(w,v)}

while not all nodes in S:

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

u

smallest D(w)

S = {u}

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

u

add E to S

S = {u, E}

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

3

∞

∞

6

3

2

u D(v) = min{∞, 2 + 1}

S = {u, E}

D(v) = min{∞, 2 + 4}

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

3

u

S = {u, E}

3

6

2

Now, do it by yourself

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

5

6

8

3

u 3

6

2

Here is the final state

S = {u, A,

 B, C, D, E,

 F,G}

Communication Networks | Mon 28 Feb 2022 13 of 15

This algorithm has a O(n2) complexity

where n is the number of nodes in the graph

iteration #1 search for minimum through n nodes

iteration #2 search for minimum through n-1 nodes

iteration n search for minimum through 1 node

n(n+1) operations => O(n2)

2

Better implementations rely on a heap

to find the next node to expand,

bringing down the complexity to O(n log n)

This algorithm has a O(n2) complexity

where n is the number of nodes in the graph

2 1

1

2

1
4

5

4 3

3

Forwarding table

A B

C D

E F

G

A

B

C

D

E

F

G

A

E

A

u

E

E

From the shortest-paths,

u can directly compute its forwarding table

destination next-hop

A

E

To build this global view

routers essentially solve a jigsaw puzzle

2 1

1

2

1
4

5

4 3

Initially,

routers only know their ID and their neighbors

u

3

A B

C D

E F

G

D only knows,

it is connected to B and C

along with the weights to reach them

(by configuration)

2 1

1

2

1
4

5

4 3

Each routers builds a message (known as Link-State)

and floods it (reliably) in the entire network

u

3

A B

C

E F

G

D edge (D,B); cost: 1

edge (D,C); cost: 4

D’s Advertisement

required for correctness

see exercise

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

At the end of the flooding process,

everybody share the exact same view of the network

cf. exercice session

for the dynamic case

Dijkstra will always converge to a unique stable state

when run on static weights

Communication Networks | Mon 28 Feb 2022 14 of 15

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector#3

BGP

SDN

Essentially,

there are three ways to compute valid routing state

Instead of locally compute paths based on the graph,

paths can be computed in a distributed fashion

Let dx(y) be the cost of the least-cost path

known by x to reach y

Let dx(y) be the cost of the least-cost path

known by x to reach y

Each node bundles these distances

into one message (called a vector)

that it repeatedly sends to all its neighborsuntil convergence

Let dx(y) be the cost of the least-cost path

known by x to reach y

Each node bundles these distances

into one message (called a vector)

that it repeatedly sends to all its neighbors

Each node updates its distances

based on neighbors’ vectors:

dx(y) = min{ c(x,v) + dv(y) } over all neighbors v

until convergence 2 1

1

2

1
4

5

4 3

Let’s compute the shortest-path

from u to D

u

3

A B

C D

E F

G

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

dx(y) = min{ c(x,v) + dv(y) }

over all neighbors v

du(D) = min{ c(u,A) + dA(D),

 c(u,E) + dE(D) }

The values computed by a node u

depends on what it learns from its neighbors (A and E)

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

dB(D) = 1

dC(D) = 4

To unfold the recursion,

let’s start with the direct neighbor of D

Communication Networks | Mon 28 Feb 2022 15 of 15

2 1

1

2

1
4

5

4 3

B and C announce their vector to their neighbors,

enabling A to compute its shortest-path

u

3

A B

C D

E F

G

dA(D) = min { 2 + dB(D),

 1 + dC(D)}

1

4
= 3

2 1

1

2

1
4

5

4 3

As soon as a distance vector changes,

each node propagates it to its neighbor

u

3

A B

C D

E F

G

dE(D) = min { 1 + dC(D),

 4 + dG(D),

 2 + du(D)}

= 5

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

= 6

du(D) = min { 3 + dA(D),

 2 + dE(D) }

Eventually, the process converges

to the shortest-path distance to each destination

the one which advertised the smallest cost

As before, u can directly infer its forwarding table

by directing the traffic to the best neighbor

Evaluating the complexity of DV is harder,

we’ll get back to that in a couple of weeks
Communication Networks

Spring 2022

ETH Zürich (D-ITET)

Laurent Vanbever

28 February 2022

nsg.ee.ethz.ch

