
Communication Networks

Spring 2022

ETH Zürich (D-ITET)

Laurent Vanbever

28 February 2022

Materials inspired from Scott Shenker & Jennifer Rexford

 

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch


routing
reliable 

delivery

Communication Networks

Part 2: Concepts
 



routing
reliable 

delivery

How do you guide IP packets 

from a source to destination?

How do you ensure reliable transport 

on top of best-effort delivery?

Communication Networks

Part 2: Concepts
 



routing
reliable 

delivery

How do you guide IP packets 

from a source to destination?



 

Packet

Think of IP packets as envelopes



 

Like an envelope, 
packets have a header

 

Header



 

Like an envelope, 
packets have a payload

 

Payload



destination

source

 

 

 

Identify the

of the communication

src address

dst address

The header contains the metadata
needed to forward the packet



 

The payload contains
the data to be delivered

 

Payload

Could you please send me an 



SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS

Routers forward IP packets hop-by-hop
towards their destination

ATLA



SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS

Laurent

Google

src

dst

ATLA



SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS
Laurent

Google

src

dst

ATLA



SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS Laurent

Google

src

dst

ATLA



SEAT

LOSA

SALT

KANS

CHIC

NEWY

WASH

HOUS

Laurent

Google

src

dst
ATLA



SEAT

LOSA

SALT

KANS

CHIC

NEWY

HOUS

Laurent

Google

src

dst

ATLA



SEAT

LOSA

SALT

KANS

CHIC

HOUS

Laurent

Google

src

dst

NEWY

WASH

ATLA



SEAT

LOSA

SALT
CHIC

HOUS

ATLA

WASH

NEWY

KANS

Let’s zoom in on what is going on
between two adjacent routers



 Data-Plane  Data-Plane

IF#1

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA HOUS



 Data-Plane  Data-Plane

IF#1

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

Laurent

Google

src

dst

Forwarding table

Laurent

IF#4

IF#1

destination output

Google

Upon packet reception, routers locally look up 
their forwarding table to know where to send it next 

Packet

LOSA HOUS



 Data-Plane  Data-Plane

IF#1

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

Laurent

IF#4

IF#1

Forwarding table

destination output

Google

Laurent

Google

src

dst

Packet

LOSA HOUS

Here, the packet should be directed to IF#4



 Data-Plane  Data-Plane

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA IP router HOUS IP router

IF#1

Laurent

Google

src

dst



 Data-Plane  Data-Plane

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA IP router HOUS IP router

Laurent

Google

src

dst

IF#1

Laurent

IF#3

IF#1

Forwarding table

destination output

Google

Forwarding is repeated at each router, 
until the destination is reached



 Data-Plane  Data-Plane

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA IP router HOUS IP router

Laurent

Google

src

dst

IF#1

Laurent

IF#3

IF#1

Forwarding table

destination output

Google



 Data-Plane  Data-Plane

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

LOSA IP router HOUS IP router

Laurent

Google

src

dst

IF#1

Laurent

IF#3

IF#1

Forwarding table

destination output

Google



 Data-Plane  Data-Plane

IF#2

IF#3 IF#1 IF#3

IF#4

LOSA IP router HOUS IP router

Laurent

Google

src

dst

IF#1

IF#4 IF#2



Forwarding decisions necessarily depend on  

the destination, but can also depend on other criteria

destination

source

criteria mandatory (why?)

+any other header

input port

requires n2 state

traffic engineering



destination

source

Let’s compare these two



A

B

X

With source- & destination-based routing, 
paths from different sources can differ

dest output

EastX

src

A

South-EastXB



With destination-based routing, 
paths from different source coincide once they overlap

A

B

X

dest output

EastX



Once path to destination meet, 

they will never split

Set of paths to the destination 

produce a spanning tree rooted at the destination:

cover every router exactly once

only one outgoing arrow at each router



Here is an example of a spanning tree 

for destination X

X



In the rest of the lecture, 

we’ll consider destination-based routing

the default in the Internet



LOSA IP router HOUS IP router

Laurent

IF#3

IF#1

Forwarding table

destination output

Google

 Data-Plane  Data-Plane

IF#1

IF#2

IF#3

IF#4

IF#1

IF#2

IF#3

IF#4

Laurent

IF#4

IF#1

Forwarding table

destination output

Google

Where are these forwarding tables coming from?



 Data-Plane  Data-Plane



 Data-Plane  Data-Plane

  Control-Plane Control-Plane

In addition to a data-plane, 

routers are also equipped with a control-plane



Routing

Configuration

Statistics

…

Roles

Think of the control-plane as the router’s brain



Laurent

IF#3

IF#1

destination output

Google

Routing is the control-plane process that 
computes and populates the forwarding tables

Laurent

IF#4

IF#1

destination output

Google

  Control-PlaneControl-Plane



How can a router know  

where to direct packets 

if it does not know what 

the network looks like?

While forwarding is a local process, 

routing is inherently a global process



Forwarding vs Routing 

summary

forwarding routing

directing packet to 

an outgoing link

local network-wide

computing the paths 

packets will follow

nanoseconds milliseconds 

(hopefully)

goal

scope

timescale

implem. hardware 

usually

software 

usually



The goal of routing is to compute 

valid global forwarding state

a global forwarding state is valid if

it always delivers packets 

to the correct destination

Definition



sufficient and necessary condition

a global forwarding state is valid if and only if

no outgoing port defined in the table 

there are no dead ends

packets going around the same set of nodes

there are no loops

Theorem



A global forwarding state is valid if and only if 

there are no dead ends

A

B

X

dest output

EastX

dest output

WestA

drops all traffic to X



A global forwarding state is valid if and only if 

there are no forwarding loops

A

B

X

dest output

EastX

dest output

WestX

bounces traffic back



question 1

question 2

How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?



How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?

question 1



Mark all outgoing ports with an arrow

Eliminate all links with no arrow

State is valid iff the remaining graph 

is a spanning-tree

simple algorithm

for one destination

Verifying that a routing state is valid is easy



X

dest

X

dest output

East

dest output

WestX

Given a graph with the corresponding forwarding state



X

Mark all outgoing ports with an arrow



X

Eliminate all links with no arrow



X



X

The result is a spanning tree. 

This is a valid routing state



X

Mark all outgoing ports with an arrow



X

Eliminate all links with no arrow



X

The result is not a spanning-tree. 

The routing state is not valid

loop

dead-end



question 2

How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?



Producing valid routing state is harder, 

but doable

prevent dead ends

easy

prevent loops

hard



This is the question  

you should focus on

prevent dead ends

easy

prevent loops

hard

Producing valid routing state is harder 

but doable



prevent loops

hard

Existing routing protocols differ in 

how they avoid loops



Essentially,  

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

#2

#3

BGP

SDN

Intuition Example



Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

BGP

SDN

Essentially,  

there are three ways to compute valid routing state



The easiest way to avoid loops is to route traffic  

on a loop-free topology

Take an arbitrary topology

Build a spanning tree and  

ignore all other links

Done!

simple algorithm

Why does it work? Spanning-trees have only one path 

between any two nodes



In practice,  

there can be many spanning-trees for a given topology



Spanning-Tree #1



Spanning-Tree #2



Spanning-Tree #3



literally just flood  

the packets everywhere

Once we have a spanning tree, 

forwarding on it is easy



A

B

When a packet arrives,  

simply send it on all ports



While flooding works,  

it is quite wasteful

A

B

Useless transmissions



The issue is that nodes do not know their 

respective locations



Nodes can learn how to reach nodes  

by remembering where packets came from

then

intuition

switch X can use port 4  

to reach node A

flood packet from node A  

entered switch X on port 4 

if 



A

B



A

Node A can be reached 

through this port

B



A

B



A

B

All the green nodes learn how to reach A



A

All the green nodes learn how to reach A

B



A

B

B answers back to A  

enabling the green nodes to also learn where B is



A

B

There is no need for flooding here 

as the position of A is already known by everybody



A

B

Learning is topology-dependent 

The blue nodes only know how to reach A (not B)



Routing by flooding on a spanning-tree 

in a nutshell

When destination answers, some switches learn where it is

some because packet to you is not flooded anymore

Flood first packet to node you’re trying to reach

all switches learn where you are

The decision to flood or not is done on each switch

depending on who has communicated before



Spanning-Tree in practice 

used in Ethernet

advantages disadvantages

plug-and-play 

configuration-free

automatically adapts 

to moving host

slow to react to failures

mandate a spanning-tree 

eliminate many links from the topology

slow to react to host movement



Essentially,  

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#2

BGP

SDN



If each router knows the entire graph,  

it can locally compute paths to all other nodes



Initialization Loop

Once a node u knows the entire topology,  

it can compute shortest-paths using Dijkstra’s algorithm

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S: 

D(v) = min{D(v), D(w) + c(w,v)} 

while not all nodes in S:S = {u} 

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v) 

else:

D(v) = ∞ 



Dijkstra maintains two data structures:  

S and D

S

D(v)

successors

distances

the set of vertices whose 

shortest path is known

the current estimate of  

the shortest path cost  

towards vertex v



The initialization phase defines  

the original data structures content

for all nodes v:

if (v is adjacent to u):

else:

S = {u} 

u is the node running the algorithm

D(v) = c(u,v) c(u,v) is the weight of the link 

connecting u and v

D(v) = ∞ 

D(v) is the smallest distance  

currently known by u to reach v



Each iteration Dijkstra adds 1 node to S (the closest one) 

before updating the distances to reach the others nodes

Loop

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S: 

D(v) = min{D(v), D(w) + c(w,v)} 

while not all nodes in S:



2 1

1

2

1
4

5

4 3

Let’s compute the shortest-paths 

from u

u

3

A B

C D

E F

G



2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

Initialization

S = {u} 

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v) 

else:

D(v) = ∞ 



2 1

1

2

1
4

5

4 3

S only contains u itself and 

D is initialized based on u’s weight

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

S = {u}

u



2 1

1

2

1
4

5

4 3

3

A B

C D

E F

G

u

Loop

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S: 

D(v) = min{D(v), D(w) + c(w,v)} 

while not all nodes in S:



2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

u

smallest D(w)

S = {u}



2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

u

add E to S

S = {u, E}



2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

3

∞

∞

6

3

2

u D(v) = min{∞, 2 + 1} 

S = {u, E}

D(v) = min{∞, 2 + 4} 



2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

3

u

S = {u, E}

3

6

2

Now, do it by yourself



2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

5

6

8

3

u 3

6

2

Here is the final state

S = {u, A, 

      B, C, D, E, 

      F,G}



This algorithm has a O(n2) complexity 

where n is the number of nodes in the graph 

iteration #1 search for minimum through n nodes

iteration #2 search for minimum through n-1 nodes

iteration n search for minimum through 1 node

n(n+1) operations => O(n2)

2



Better implementations rely on a heap  

to find the next node to expand,  

bringing down the complexity to O(n log n)

This algorithm has a O(n2) complexity 

where n is the number of nodes in the graph 



2 1

1

2

1
4

5

4 3

3

Forwarding table

A B

C D

E F

G

A

B

C

D

E

F

G

A

E

A

u

E

E

From the shortest-paths,  

u can directly compute its forwarding table

destination next-hop

A

E



To build this global view 

routers essentially solve a jigsaw puzzle



2 1

1

2

1
4

5

4 3

Initially, 

routers only know their ID and their neighbors

u

3

A B

C D

E F

G

D only knows,  

it is connected to B and C

along with the weights to reach them 

(by configuration)



2 1

1

2

1
4

5

4 3

Each routers builds a message (known as Link-State) 

and floods it (reliably) in the entire network

u

3

A B

C

E F

G

D edge (D,B); cost: 1

edge (D,C); cost: 4

D’s Advertisement



required for correctness 

see exercise

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

At the end of the flooding process, 

everybody share the exact same view of the network



cf. exercice session 

for the dynamic case

Dijkstra will always converge to a unique stable state 

when run on static weights



Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector#3

BGP

SDN

Essentially,  

there are three ways to compute valid routing state



Instead of locally compute paths based on the graph, 

paths can be computed in a distributed fashion



Let dx(y) be the cost of the least-cost path 

known by x to reach y



Let dx(y) be the cost of the least-cost path 

known by x to reach y

Each node bundles these distances 

into one message (called a vector) 

that it repeatedly sends to all its neighborsuntil convergence



Let dx(y) be the cost of the least-cost path 

known by x to reach y

Each node bundles these distances 

into one message (called a vector) 

that it repeatedly sends to all its neighbors

Each node updates its distances 

based on neighbors’ vectors:

dx(y) = min{ c(x,v) + dv(y) } over all neighbors v

until convergence



2 1

1

2

1
4

5

4 3

Let’s compute the shortest-path 

from u to D

u

3

A B

C D

E F

G



2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

dx(y) = min{ c(x,v) + dv(y) }

over all neighbors v

du(D) = min{ c(u,A) + dA(D), 

                    c(u,E) + dE(D) }

The values computed by a node u 

depends on what it learns from its neighbors (A and E)



2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

dB(D) = 1

dC(D) = 4

To unfold the recursion, 

let’s start with the direct neighbor of D



2 1

1

2

1
4

5

4 3

B and C announce their vector to their neighbors, 

enabling A to compute its shortest-path

u

3

A B

C D

E F

G

dA(D) = min { 2 + dB(D),  

                     1 + dC(D)}

1

4
= 3



2 1

1

2

1
4

5

4 3

As soon as a distance vector changes, 

each node propagates it to its neighbor

u

3

A B

C D

E F

G

dE(D) = min { 1 + dC(D),  

                     4 + dG(D), 

                     2 + du(D)}

= 5



2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

= 6

du(D) = min { 3 + dA(D), 

                     2 + dE(D) }

Eventually, the process converges 

to the shortest-path distance to each destination



the one which advertised the smallest cost

As before, u can directly infer its forwarding table 

by directing the traffic to the best neighbor



Evaluating the complexity of DV is harder, 

we’ll get back to that in a couple of weeks



Communication Networks

Spring 2022
 

ETH Zürich (D-ITET)

Laurent Vanbever

28 February 2022

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

