Communication Networks

Spring 2022

Laurent Vanbever
nsg.ee.ethz.ch

21 February 2022
D-ITET

The Internet

An exciting place

~22 billion

~22 billion

estimated* \# of Internet connected devices
in 2020

* Cisco Visual Networking Index 2018-2023

~30 billion

estimated* \# of Internet connected devices in 2023

* Cisco Visual Networking Index 2018-2023

~4 exabytes

estimated* daily global IP traffic
in 2017

* Cisco Visual Networking Index 2017-2022

If BGI $=1$ Gigabyte

volume(Great Wall of China) $=1$ exabyte

~4 exabytes

estimated* daily global IP traffic
in 2017

* Cisco Visual Networking Index 2017-2022

~13 exabytes

estimated* daily global IP traffic
in 2022

* Cisco Visual Networking Index 2017-2022

~75\% of all Internet traffic

estimated* percentage of video traffic in 2017

* Cisco Visual Networking Index 2017-2022

Upstream		Downstream		Aggregate	
BitTorrent	18.37\%	Netflix	35.15\%	Netflix	32.72\%
YouTube	13.13\%	YouTube	17.53\%	YouTube	17.31\%
Netflix	10.33\%	Amazon Video	4.26\%	HTTP - OTHER	4.14\%
SSL - OTHER	8.55\%	HTTP - OTHER	4.19\%	Amazon Video	3.96\%
Google Cloud	6.98\%	iTunes	2.91\%	SSL - OTHER	3.12\%
iCloud	5.98\%	Hulu	2.68\%	BitTorrent	2.85\%
HTTP - OTHER	3.70\%	SSL - OTHER	2.53\%	iTunes	2.67\%
Facebook	3.04\%	Xbox One Games Download	2.18\%	Hulu	2.47\%
FaceTime	2.50\%	Facebook	1.89\%	Xbox One Games Download	2.15\%
Skype	1.75\%	BitTorrent	1.73\%	Facebook	2.01\%
	69.32\%		74.33\%		72.72\%

Table 1 - Top 10 Peak Period Applications - North America, Fixed Access
http://bit.ly/2GlwI8G

~82\% of all Internet traffic

estimated* percentage of video traffic in 2022

* Cisco Visual Networking Index 2017-2022

The Internet

A tense place

Countries get disconnected for political reasons

Myanmar coup: How the military disrupted the internet

By Christopher Giles
BBC Reality Check
(1) 4 February

Belarus Has Shut Down the Internet Amid a Controversial Election

Human rights organizations have blamed the Belarusian government for widespread outages.

https://www.independent.co.uk/news/world/africa/algeria-iraq-shut-down-internet-students-cheating-exams-facebook-a8410341.html

Economic impact alone was $£ 1.9$ bn, with greater fears over human rights and freedom of speech

http://www.wired.co.uk/article/over-50-internet-shutdowns-2016 By MATt KAMEN
Tuesday 3 January 2017

Internet communications get congested for economical reasons

Can ISPs selectively slow down traffic?

The U.S. Federal Communications Commission (FCC) set network neutrality rules in 2015

WASHINGTON - The Federal Communications Commission on Thursday released extensive details of how it would regulate broadband Internet providers as a public utility, producing official wording that almost certainly sets the stage for extended legal fights.

The release of the rules had been eagerly anticipated by advocates and
lawmakers, as well as broadband and technology companies, since the
agency approved new rules for Internet service two weeks ago. The details came in a 313-page document that included the new rules and the legal justifications for them.

... which it then repealed in 2017

We're disappointed in the decision to gut \#NetNeutrality恝 protections that ushered in an unprecedented era of innovation, creativity \& civic engagement. This is the beginning of a longer legal battle. Netflix stands w/ innovators, large \& small, to oppose this misguided FCC order.

```
10:26 AM - 14 Dec 2017
```


... but might restore soon

Forbes

Jan 26, 2021, 08:00am EST | 1,001 views

Net Neutrality Likely To Return With New FCC Chair

Wayne Rash Contributor (i)
Consumer Tech
Wayne Rash is a technology and science writer based in Washington.

In Switzerland, network neutrality is enforced by the Swiss Telecommunications Act since 1/1/21

- Art. 12e ${ }^{41}$ Offenes Internet
${ }^{1}$ Die Anbieterinnen von Internetzugängen übertragen Informationen, ohne dabei zwischen Sendern, Empfängern, Inhalten, Diensten, Diensteklassen, Protokollen, Anwendungen, Programmen oder Endgeräten technisch oder wirtschaftlich zu unterscheiden.
${ }^{2}$ Sie dürfen Informationen unterschiedlich übertragen, wenn dies erforderlich ist, um:
a. eine gesetzliche Vorschrift oder einen Gerichtsentscheid zu befolgen;
b. die Integrität oder Sicherheit des Netzes, der über dieses Netz erbrachten Dienste oder der angeschlossenen Endgeräte zu gewährleisten;
c. einer ausdrücklichen Aufforderung der Kundin oder des Kunden nachzukommen; oder
d. vorübergehende und aussergewöhnliche Netzwerküberlastungen zu bekämpfen; dabei sind gleiche Arten von Datenverkehr gleich zu behandeln.
${ }^{3}$ Sie dürfen neben dem Zugang zum Internet über denselben Anschluss andere Dienste anbieten, die für bestimmte Inhalte, Anwendungen oder Dienste optimiert sein müssen, um die Qualitätsanforderungen der Kundinnen und Kunden zu erfüllen. Die anderen Dienste dürfen nicht als Ersatz für Internetzugangsdienste nutzbar sein oder angeboten werden, und sie dürfen nicht die Qualität der Internetzugangsdienste verschlechtern.
${ }^{4}$ Behandeln sie Informationen bei der Übertragung technisch oder wirtschaftlich unterschiedlich, so müssen sie die Kundinnen und Kunden sowie die Öffentlichkeit darüber informieren.

[^0]
Some Internet communications are interfered against or heavily congested

Who should pay the other for Internet connectivity?

A primer on the conflict between Netflix and Comcast

https://freedom-to-tinker.com/blog/feamster/why-your-netflix-traffic-is-slow-and-why-the-open-internet-order-wont-necessarily-make-it-faster/

Due to congestion, throughput across Cogent to Comcast, Time Warner and Verizon were miserable

Median download throughput across Cogent in NYC over time from different ISPs (higher is better)

Situation massively improved after

 Netflix agreed to paid direct connection to the providers

Closer to us...

Internet infrastructures are regularly targeted by large-scale attacks

In February 2018, GitHub was targeted by
 a 1.35 Tbps Distributed Denial of Service (DDoS) attack

from a normal ~ 0.1 Tbps to 1.35 Tbps

In June 2020, Amazon was targeted by a 2.30 Tbps DDoS attack

B C	Q Sign in	Home	News	Sport	Reel	Worklife	Travel

NEWS
Home | Coronavirus | Video | World | UK | Business | Tech | Science | Stories | Entertainment \& Arts | Health
Tech

Amazon 'thwarts largest ever DDoS cyber-attack'

(1) 18 June 2020
\square

In August 2021, Microsoft was targeted by a 2.40 Tbps DDoS attack

The Internet

A vital place during a pandemic

Following the lockdown in March 2020, (wired) networks saw traffic increasing by 15-20\%

\square average traffic in bits per second
\square peak traffic in bits per second
Current 6487.8 G
Averaged 4324.7 G
Graph Peak 10385. 6
DE-CIX All-Time Peak 10385. 57
Created at 2021-02-21 10:00 UTC
Copyright 2021 DE-CIX Management GmbH
https://www.de-cix.net/en/locations/germany/frankfurt/statistics

Unsurprisingly, we saw a strong increase in

 web conferencing, video, and gaming traffic

All in all the Internet performed very well in these unpreceeding times

The Internet Is Resilient Enough to Withstand Coronavirus - But There's a Catch

By David Belson
Former Senior Director, Internet Research and Analysis ㄱ

Earlier this year, as COVID-19 began to dominate our lives, the world turned to the Internet. This sudden shift to distance learning, working from home, and families sheltering in place drove up online streaming demand, placing additional load on Internet application platforms like Zoom, Netflix, and educational tools such as Kahoot. There was also a dramatic traffic increase across supporting

The Internet

A fragile place

Despite being absolutely critical,
 the Internet infrastructure is inherently fragile

Our engineering teams have learned that configuration changes on the backbone routers that coordinate network traffic between our data centers caused issues that interrupted this communication.

This disruption to network traffic had a cascading effect on the way our data centers communicate, bringing our services to a halt.

Source: [fb.com]

Someone on the Facebook recovery effort has explained that a routine BGP update went wrong, which in turn locked out those with remote access who could reverse the mistake. Those who do have physical access do not have authorization on the servers.
Catch-22.
9:59 PM • Oct 4, 2021 • TweetDeck

746 Retweets 247 Quote Tweets 2,028 Likes
2. "Alex" and 3 others follow
\rightarrow Tabletop Scenarios
@badthingsdaily
The networking gear involved in an outage is access controlled by locks that are dependent on the network gear that is involved in the outage that is access controlled by locks that are dependent on network gear that is involved in the outage that is access controlled by the..

11:17 PM • Oct 4, 2021 • TweetDeck

106 Retweets 10 Quote Tweets 391 Likes

August 2017

Someone in Google fat-thumbed a Border Gateway Protocol (BGP) advertisement and sent Japanese Internet traffic into a black hole.
[...] the result of which was traffic from Japanese giants like NTT and KDDI was sent to Google on the expectation it would be treated as transit.

The outage in Japan only lasted a couple of hours, but was so severe that [...] the country's Internal Affairs and Communications ministries want carriers to report on what went wrong.

In February 2020, a planned maintenance work in Swisscom's network shuts down emergency numbers

"Human factors are responsible for 50% to 80% of network outages"

Communication Networks

Course goals

Knowledge

Understand how the Internet works and why

...to mega-scale data-centers

Insights
 Key concepts and problems in Networking

Naming Layering Routing Reliability Sharing

Naming Layering Routing Reliability Sharing

How do you address computers, services, protocols?

Naming Layering Routing Reliability Sharing

How do you manage complexity?

Naming Layering Routing Reliability Sharing

How do you go from A to B ?

Naming Layering Routing Reliability Sharing

How do you communicate reliably using unreliable mediums?

Naming Layering Routing Reliability Sharing

How do you divide scarce resources among competing parties?

Skills

Build, operate and configure networks

Trinity using a port scanner (nmap) in Matrix Reloaded ${ }^{\text {TM }}$

Insights

Learn about some of our current research

Communication Networks

 Course organization
Your dream team for the semester

Tobias

Coralie

Alexander

Tibor

Thomas

+ Martin and Nasib who followed the lecture in previous years

Our website: https://comm-net.ethz.ch check it out regularly!

Slides, exercises, projects, extra readings, and previous exams

The course will be split in three parts

Part 1
Part 2

Part 3

Today’s Internet
~10 lectures

Your final grade

Your final grade

There will be two practical projects, to be done in group of maximum three students
\#1 Build and operate a real, working "Internet" (20\%)
\#2 Implement an interoperable reliable protocol (10\%)

Detailed instructions will follow

If you are a repeating student, let us know if you want to keep your grades!

The course follows the textbook

Computer Networking: a Top-Down Approach

6th edition
using another edition is okay
but numbering might vary
see sections indicated
on comm-net.ethz.ch

We'll use Slack (a chat client)

to discuss about the course and assignments

Web, smartphone and desktop clients available

Using Slack is highly recommended but facultative

Use Slack to

- ask questions
- chat with other students (e.g. your group)
- be informed about course announcements (also on our website)

Register today
 > https://join.slack.com/t/comm-net22/signup

Register with your @ethz.ch email
Ping us if you prefer using another one

Use your real name
It greatly facilitates our organization

We never publish sensitive data on Slack e.g. your grades

Communication Networks

Part 1: Overview

What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?

Communication Networks

Part 1: Overview
\#1
What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?

Networks are composed of three basic components

End-systems send \& receive data

End-systems come in a wide-variety

Switches \& routers forward data to the destination

Routers/switches vary in size and usage

Cisco Nexus 7k
Routers @ETHZ
~25 deployed

Next-generation programmable switches up to 25.6 Tbps of backplane capacity*

Barefoot Tofino Wedge 100BF-32X
part of our NSG lab

[^1]Links connect end-systems to switches and switches to each other

Links, too, vary in size and usage

Copper
ADSL, RJ-45,...

Optical fibers

Wireless link

There exists a huge amount of access technologies

Ethernet	most common, symmetric
DSL	over phone lines, asymmetric
CATV	via cable TV, shared
Cellular	smart phones
Satellite	remote areas
FTTH	household
Fibers	Internet backbone
Infiniband	High performance computing

Communication Networks

Part 1: Overview

What is a network made of?
\#2
How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?

A good network topology fulfills at least three requirements

Tolerate failures

>1 path should exist between each node

Allow sharing to be feasible \& cost-effective
\# links should not be too high

Provide ample capacity
\# links should not be too small

Compare these three designs in terms of sharing, resiliency, and per-node capacity

advantages
disadvantages

Switched networks provide reasonable and flexible compromise

design switched

advantages
sharing and per-node capacity can be adapted to fit the network needs
require smart devices to perform: forwarding, routing, resource allocation

Links and switches are shared between flows

There exist two approaches to sharing: reservation and on-demand

Reservation

reserve the bandwidth
On-demand
you need in advance

Both are examples of statistical multiplexing

Reservation

On-demand
at the packet-level

Between reservation and on-demand: Which one do you pick?

Consider that each source needs 10 Mbps

What do they get with:

- reservation
- on-demand

Assume the following peak demand and flow duration
source 1

Assume the following peak demand and flow duration

What does each source get with reservation and on-demand?
first-come first-served

- equal (10 Mbps)

Peak vs average rates

$$
\begin{array}{lll}
\text { Each flow has } & \text { Peak rate } & \text { P } \\
& \text { Average rate } & \text { A }
\end{array}
$$

Reservation must reserve P, but level of utilization is A / P $P=100 \mathrm{Mbps}, A=10 \mathrm{Mbps}$, level of utilization=10\%

On-demand can usually achieve higher level of utilization depends on degree of sharing and burstiness of flows

Ultimately, it depends on the application

Reservation makes sense when P / A is small voice traffic has a ratio of 3 or so

Reservation wastes capacity when P / A is big
data applications are bursty, ratios >100 are common

Reservation makes sense when P / A is small voice traffic has a ratio of 3 or so

Reservation wastes capacity when P/A is big
data applications are bursty, ratios >100 are common

That's why the phone network used reservations
... and why the Internet does not!

The two approaches are implemented using circuit-switching or packet-switching, respectively

Reservation

On-demand
packet-switching

implem.
circuit-switching

On-demand
packet-switching

Circuit switching relies on the Resource Reservation Protocol

(1) src sends a reservation request for 10 Mbps to dst
(2) switches "establish a circuit"
(3) src starts sending data
(4) src sends a "teardown circuit" message

Let's walk through example of data transfer using circuit switching

The efficiency of the transfer depends on how utilized the circuit is once established

This is an example of poor efficiency.
The circuit is mostly idle due to traffic bursts

This is another example of poor efficiency.
The circuit is used for a short amount of time

Another problem of circuit switching is that it doesn't route around trouble

Pros and cons of circuit switching

advantages

predictable performance
simple \& fast switching
once circuit established

disadvantages

inefficient if traffic is bursty or short
complex circuit setup/teardown
which adds delays to transfer
requires new circuit upon failure

What about packet switching?

Reservation

circuit-switching
On-demand
packet-switching

In packet switching,

data transfer is done using independent packets
switch

Each packet contains a destination (dst)

Since packets are sent without global coordination, they can "clash" with each other

To absorb transient overload, packet switching relies on buffers

To absorb transient overload, packet switching relies on buffers
switch

Packet switching routes around trouble

Pros and cons of packet switching

advantages

efficient use of resources
simpler to implement

disadvantages

unpredictable performance
requires buffer management and congestion control
route around trouble

Packet switching beats circuit switching

 with respect to resiliency and efficiency
Internet
 packets

Packet switching will be our focus for the rest of the course

Communication Networks

Part 1: Overview

What is a network made of?

How is it shared?
\#3
How is it organized?

How does communication happen?

How do we characterize it?

The Internet is a network of networks

Internet Service Providers

So far, this is our vision of the Internet...

The real Internet is a "tad" more complex

The Internet has a hierarchical structure

Tier-1
international

Tier-2
national

Tier-3
local
have no provider
provide transit to Tier-3s have at least one provider
do not provide any transit have at least one provider

The distribution of networks in Tiers is extremely skewed towards Tier-3s
total ~70,000
networks

Tier-1
have no provider
~12
international

Tier-2
national
provide transit to Tier-3s
~1,000s

Tier-3
local
do not provide any transit
85-90\%
have at least one provider

Some networks have an incentive to connect directly, to reduce their bill with their own provider

This is known as "peering"

Interconnecting each network to its neighbors one-by-one is not cost effective

Physical costs
of provisioning or renting physical links

Bandwidth costs
a lot of links are not necessarily fully utilized

Human costs
to manage each connection individually

Internet eXchange Points (IXPs) solve these problems by letting many networks connect in one location

Communication Networks

Part 1: Overview

\#1
\#2
\#3
\#4
\#5

What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?

No exercise session this Thursday

Next Monday on
Communication Networks

Routing concepts

[^0]: ${ }^{41}$ Eingefügt durch Ziff. I des BG vom 22. März 2019, in Kraft seit 1. Jan. 2021 (AS 2020 6159; BBI 20176559).

[^1]: * https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html

