Communication Networks Spring 2022

Tobias Bühler

https://comm-net.ethz.ch/

ETH Zürich May 05 2022

Communication Networks Exercise 9

Last week's exercise

Important lecture topics

Introduction to this week's exercise

Time to solve the exercise

Task 8.3: BGP Hijack

AS path poisoning gives the hijacker some control over which ASes are/are not affected by the hijack

Task 8.3: BGP Hijack

AS path poisoning gives the hijacker some control over which ASes are/are not affected by the hijack

20.0.0.0/23 - AS path: F 20.0.2.0/23 - AS path: F

Task 8.3: BGP Hijack

AS path poisoning gives the hijacker some control over which ASes are/are not affected by the hijack

20.0.0/23 - AS path: F 20.0.2.0/23 - AS path: F

Communication Networks Exercise 9

Last week's exercise

Important lecture topics

Introduction to this week's exercise

Time to solve the exercise

a simple reliable transport protocol with

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

Sender

a simple reliable transport protocol with

a simple reliable transport protocol with

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

a simple reliable transport protocol with

Physical and virtual ports

A **port** can describe two completely different concepts

A physical port on a switch or router (interface)

A logical (virtual) port on a host to demultiplex incoming data

Physical ports

Physical ports

Physical interface on a device

Often numbered from 1...N

Physical ports

Important if you configure a device (compare routing project)

These ports are normally **not** visible in a packet header

We also saw these ports in the Spanning Tree algorithm

Constructing a Spanning Tree in a nutshell

Switches...

elect a root switch

the one with the smallest identifier

determine if each interface is on the shortest-path from the root and disable it if not

For this switches exchange Bridge Protocol Data Unit (BDPU) messages

Each switch X iteratively sends

the # hops to reach it

initially Each switch proposes itself as root sends (X,0,X) on all its interfaces

Upon receiving (Y, d, X), checks if Y is a better root if so, considers Y as the new root, flood updated message

Switches compute their distance to the root, for each port simply add 1 to the distance received, if shorter, flood

Switches disable interfaces not on shortest-path

tie-breaking

Upon receiving \neq BPDUs from \neq switches with = cost Pick the BPDU with the lower switch sender ID

Upon receiving ≠ BPDUs from a neighboring switch Pick the BPDU with the lowest port ID (e.g. port 2 < port 3)

tie-breaking

Upon receiving \neq BPDUs from \neq switches with = cost Pick the BPDU with the lower switch sender ID

Upon receiving ≠ BPDUs from a neighboring switch Pick the BPDU with the lowest port ID (e.g. port 2 < port 3)

This switch receives two BPDUs from its neighbor Both have the same cost One is received over port 1, the other over port 4 The switch picks the one from port 1

Host/server App 1 App 3 App 2 App 4 A single interface with IP 1.2.3.4

Host/server

How does the host (the transport layer) know to which application it has to forward incoming packets?

Host/server

App 1 Port: 443	App 3 Port: 22
App 2 Port: 26532	App 4 Port 4263
	A single interface with IP 1.2.3.4

How does the host (the transport layer) know to which application it has to forward incoming packets?

Each application listens on a different logical **port**.

Host/server

App 1 Port: 443	App 3 Port: 22
App 2 Port: 26532	App 4 Port 4263
	A single interface with IP 1.2.3.4

How does the host (the transport layer) know to which application it has to forward incoming packets?

Each application listens on a different logical **port**.

Transport protocol headers contain these port numbers.

Ports in UDP/TCP packets

TCP

Host/server

Incoming packets are multiplexed based on their destination port.

Host/server

App 1 App 3 Port: 443 Port: 22 App 2 App 4 Port: 26532 Port 4263 A single interface with IP 1.2.3.4

Incoming packets are multiplexed based on their destination port.

More on ports

Ports are 16-bit header fields (max port number: 2**16 - 1)

Ports 0–1023 are "well–known" for example port 443 for HTTPS

Ports 1024-65535 are so-called "ephemeral" ports given to clients (picked at random)

For more details look at the lecture slides UDP and TCP, keywords: ports and sockets

Example: The Internet with NAT (lecture week 5)

Local Network 192.168.0.0/16

The packet reaches the correct application as it contains destination port 80

The answer from the server goes towards destination port 5000

The NAT performs the reverse translation

The packet reaches the correct

application on the client listening on port 3001

Communication Networks Exercise 9

Last week's exercise

Important lecture topics

Introduction to this week's exercise

Time to solve the exercise

Task 9.1: Reliable versus Unreliable Transport

Simple introduction question

Consider the information from the lecture slides

Task 9.2: Negative Acknowledgements

Instead of acknowledging what we received ...

... the receiver could also acknowledge not-received data

In which scenarios does this (not) work well?

Task 9.3: Fairness

In this question we consider a max-min fair allocation

Have a look at lecture slides 78-81 in

04_concepts_reliable_transport.pdf

Task 9.4: Understanding Go-Back-N's Behavior

Consult the introduction slides we just discussed

Task 9.5: Reliable Transport

Draw time-sequence diagrams

10 Mbps link
100 ms propagation delay
10000 bits in data segment
ACK size very small

Communication Networks Exercise 9

Last week's exercise

Important lecture topics

Introduction to this week's exercise

Time to solve the exercise