Communication Networks Spring 2022

Tobias Bühler
https://comm-net.ethz.ch/

ETH Zürich
May 052022

Communication Networks

Exercise 9

Last week's exercise

Important lecture topics

Introduction to this week's exercise

Time to solve the exercise

Task 8.3: BGP Hijack

AS path poisoning gives the hijacker some control over which ASes are/are not affected by the hijack

Task 8.3: BGP Hijack

AS path poisoning gives the hijacker some control over which ASes are/are not affected by the hijack

20.0.0.0/23 - AS path: F
20.0.2.0/23 - AS path: F

Task 8.3: BGP Hijack

AS path poisoning gives the hijacker some control over which ASes are/are not affected by the hijack

Communication Networks

Exercise 9

Last week's exercise

Important lecture topics

Introduction to this week's exercise

Time to solve the exercise

The Go-Back-N protocol

The Go-Back-N Protocol

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

Sender

Receiver

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

> ready to send | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sender

Receiver

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

Receiver

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

Sender

Receiver

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

ACK'ed

Sender

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

a simple reliable transport protocol with
a sliding window, cumulative ACKs, timeouts and retransmissions

Physical and virtual ports

A port can describe two completely different concepts

A physical port on a switch or router (interface)

A logical (virtual) port on a host to demultiplex incoming data

Physical ports

Physical ports

Physical interface on a device Often numbered from $1 . . . \mathrm{N}$

Physical ports

Important if you configure a device (compare routing project)
These ports are normally not visible in a packet header
We also saw these ports in the Spanning Tree algorithm

Constructing a Spanning Tree in a nutshell

Switches...
elect a root switch
the one with the smallest identifier
determine if each interface is
on the shortest-path from the root
and disable it if not

For this switches exchange Bridge Protocol Data Unit (BDPU) messages

Each switch X iteratively sends

Each switch proposes itself as root sends ($\mathrm{X}, 0, \mathrm{X}$) on all its interfaces

Upon receiving ($\mathrm{Y}, \mathrm{d}, \mathrm{X}$), checks if Y is a better root if so, considers Y as the new root, flood updated message

Switches compute their distance to the root, for each port simply add 1 to the distance received, if shorter, flood

Switches disable interfaces not on shortest-path
tie-breaking Upon receiving \neq BPDUs from \neq switches with $=$ cost
Pick the BPDU with the lower switch sender ID

Upon receiving \neq BPDUs from a neighboring switch
Pick the BPDU with the lowest port ID (e.g. port 2 < port 3)

Upon receiving \neq BPDUs from \neq switches with $=$ cost
Pick the BPDU with the lower switch sender ID

Upon receiving \neq BPDUs from a neighboring switch Pick the BPDU with the lowest port ID (e.g. port 2 < port 3)

This switch receives two BPDUs from its neighbor

Both have the same cost
One is received over port 1 , the other over port 4
The switch picks the one from port 1

Logical (virtual) ports on a host

Logical (virtual) ports on a host

Host/server
 with IP 1.2.3.4

Logical (virtual) ports on a host

Host/server

How does the host (the transport layer) know to which application it has to forward incoming packets?

Logical (virtual) ports on a host

Host/server

How does the host (the transport layer) know to which application it has to forward incoming packets?

Each application listens on a different logical port.

Logical (virtual) ports on a host

Host/server

How does the host (the transport layer) know to which application it has to forward incoming packets?

Each application listens on a different logical port.

Transport protocol headers contain these port numbers.

Ports in UDP/TCP packets

UDP		TCP		
		Source port		Destination port
		Sequence number		
		Acknowledgment		
		HdrLen	Flags	Advertised window
SRC port	DST port	Checksum		Urgent pointer
checksum	length	Options (variable)		
DATA		Data		

Logical (virtual) ports on a host

Host/server

Incoming packets are multiplexed based on their destination port.

Logical (virtual) ports on a host

Host/server

Incoming packets are multiplexed based on their destination port.

	Layer 2
Dst IP:	
1.2 .3 .4	

More on ports

Ports are 16-bit header fields (max port number: 2 **16-1)

Ports 0-1023 are „well-known"
for example port 443 for HTTPS

Ports 1024-65535 are so-called „ephemeral" ports given to clients (picked at random)

For more details look at the lecture slides
UDP and TCP, keywords: ports and sockets

Example: The Internet with NAT (lecture week 5)

Example: The Internet with NAT

Example: The Internet with NAT

ephemeral port,

 client listens on this port
application listens

$$
\text { on port } 80
$$

Example: The Internet with NAT

Example: The Internet with NAT

The packet reaches the correct
application as it contains destination port 80

Example: The Internet with NAT

The answer from the server goes towards destination port 5000

Example: The Internet with NAT

The NAT performs the reverse translation

Example: The Internet with NAT

The packet reaches the correct application on the client listening on port 3001

Example: The Internet with NAT

Communication Networks

Exercise 9

Last week's exercise

Important lecture topics

Introduction to this week's exercise

Time to solve the exercise

Task 9.1: Reliable versus Unreliable Transport

Simple introduction question

Consider the information from the lecture slides

Task 9.2: Negative Acknowledgements

Instead of acknowledging what we received ...
... the receiver could also acknowledge not-received data

In which scenarios does this (not) work well?

Task 9.3: Fairness

In this question we consider a max-min fair allocation

Have a look at lecture slides 78-81 in
04_concepts_reliable_transport.pdf

Task 9.4: Understanding Go-Back-N’s Behavior

Consult the introduction slides we just discussed

Task 9.5: Reliable Transport

Draw time-sequence diagrams

10 Mbps link
100 ms propagation delay
10000 bits in data segment
ACK size very small

Communication Networks

Exercise 9

Last week's exercise

Important lecture topics

Introduction to this week's exercise

Time to solve the exercise

