

Thomas Holterbach Coralie Busse-Grawitz https://comm-net.ethz.ch/

ETH Zürich April 7 2022

How (not) to fix count-to-infinity

Overview current exercise

Understanding traceroute

Solving the exercise/Q&A

How (not) to fix count-to-infinity

Overview current exercise

Understanding traceroute

Solving the exercise/Q&A

Consider the following network

Consider the following network leading to the following vectors

thelecture

t = 0

thelecture

(X,Y) weight changes from 4 to 1

time t=0

Y	dest.	vi	a
vector		X	Z
	X	4	6
Z	dest.	vi	a
vector		X	Y
	X	50	5

Node detects local cost change, update their vectors, and notify their neighbors if it has changed

no one moves anymore network has converged!

thelecture

t > 3

	t=0		t=1		t=2		t>3		
Y vector	dest.	via XZ	dest.	via XZ			dest.	via X	Ζ
	X	4 6	X	1 6			X	1	3
Z vector	dest.	via X Y			dest.	via X Y	dest.	via X	Y
	X	50 5			X	50 2	X	50	2

The algorithm terminates after 3 iterations

Good news travel fast!

Good news travel fast!

What about bad ones?

t = 3

thelecture

Y updates its vector, sends it to X and Z

	t=0		t=1		t	t=2		t	=3		
Y vector	dest.	via X Z	dest.	via X	Ζ				dest.	via X	a Z
	X	4 6	X	60	6				X	60	8
Z vector	dest.	via X Y				dest.	via X Y				
	X	50 5				X	50 7				

Fromecture					Z	
	t=4				t=44	
Y vector				many iterations later	dest.	via XZ
					X	60 51
Z vector	dest.	via X	a Y		dest.	via XY
	X	50	9		X	50 52

This problem is known as count-to-infinity, a type of routing loop

the lecture

Count-to-infinity leads to very slow convergence what if the cost had changed from 4 to 9999?

Routers don't know when neighbors use them Z does not know that Y has switched to use itself

Let's try to fix that (left to the exercise session)

Whenever a router uses another one,

it will announce it an infinite cost

The technique is known as poisoned reverse

Y	dest.	vi	a
vector		X	Z
	X	4	∞
Z	dest.	vi	a
vector		X	Y
	X	50	5

t = 1

Y updates its vector, sends it to X and Z

t = 4

Z updates its vector, sends it to X and Y

t=4

Y vector

Z vector	dest.	via X Y	
	X	50	∞

	t=4			1	t>4		
Y vector					dest.	vi X	a Z
					X	60	51
Z vector	dest.	vi X	a Y		dest.	vi X	a Y
	X	50	∞		X	50	∞

While poisoned reverse solved this case, it does not solve loops involving 3 or more nodes...

see exercise task 1

Actual distance-vector protocols mitigate this issue by using small "infinity", *e.g.* 16

How (not) to fix count-to-infinity

Overview current exercise

Understanding traceroute

Solving the exercise/Q&A

Task 1: Convergence with Poisoned Reverse

Task 2: Convergence (Exam-Style Question)

Loopy or not?

How (not) to fix count-to-infinity

Overview current exercise

Understanding traceroute

Solving the exercise/Q&A