

Communication Networks

Prof. Laurent Vanbever

Exercise 6 - Convergence Process in Link-State and Distance-Vector Routing

Convergence

6.1 Convergence with Poisoned Reverse

Add the distance vectors to this table

6.2 Convergence (Exam Style Question)

Loopy or not?

Consider this simple network running OSPF as link-state routing protocol. Each link is associated with a weight that represents the cost of using it to forward packets. Link weights are bi-directional.

Assume that routers A, B and D transit traffic for an IP destination connected to C and that link (B, C) fails. Which nodes among A, B and D could potentially see their packets being stuck in a transient forwarding loop? Which ones would not?

Assume now that the network administrator wants to take down the link (B, C), on purpose, for maintenance reasons. To avoid transient issues, the administrator would like to move away all traffic from the link before taking it down and this, without creating any transient loop (if possible). What is the minimum sequence of increased weights setting on link (B, C) that would ensure that no packet destined to C is dropped?

