
Communication Networks
Prof. Laurent Vanbever

Exercise 13 – Applications

13.1 DNS

For this and the following task you will have to change the DNS resolver your VM is using. To do that execute

the following command (this change will be lost on reboot):

resolvectl dns enp1s0 192.168.122.98

Now answer the following questions using dig(1) on your VM:

a) What is the IP address of the web server at www.lan? Which group hosts the web server?

b) What is the name of the default gateway? The command to inspect the routing table is ip route.

c) If you resolve the name from the previous subtask, what do you get? Is that to be expected?

d) Resolve the name self.lan. What IP address is it pointing to? Can you explain what is happening here?

13.2 HTTP

We know interrogate a web server on three levels: Once directly using telnet(1), once using a command line

utility called curl and finally via the web browser running on your local system.

a) What port is HTTP using? You can consult the file /etc/services on your VM. Using this file can you

work out what port ntp is using? What protocol is it using?

b) Now connect to the web server using telnet(1). Every time you press return, telnet(1) sends a carriage

return (CR) and a line feed (LF ) to the remote host. Type your request for the root directory like this:

GET / HTTP/1.0

and press enter twice to first end the current line and then to send an empty line.

c) Can you learn what software the web server is using?

d) Now use the curl(1) tool to request www.lan like this:

curl www.lan

Is the result different from the first task? Can you work out why?

e) Using ssh(1) you can connect the web browser on your computer to the web server like this:

ssh -L 127.0.0.1:8080:<web-server-name>:<www-port> -p <2000+X> student@duvel.ethz.ch

X your group number. Now navigate your browser to 127.0.0.1:8080 and look at the shown web page.

f) Your friend says there is a secret web server called www2.lan running on the same host as www.lan, but

when you check with dig(1) there is no IP for www2.lan. Can you find a way to access the secret server?



13.3 (Extra) IP Sockets – Establishing a TCP connection with C

In this task you will establish a TCP connection to a server using C. All the tools you need (a C compiler

and the appropriate headers) are already installed on you VM. To make sure you are not interfering with

other members of your group, work inside a directory named after your nethz username. You can create a

directory using mkdir(1) and switch to it with cd:

mkdir <nethz-name>

cd <nethz-name>

Test your setup To test the setup use the file example.c from the course web site. You can either download

it on your computer and then upload it with scp(1) to your VM, or download it directly to your VM using

curl(1). You can now compile it using:

cc example.c

and execute the resulting file using:

./a.out

You should see the content of example.c in your terminal.

Useful functions, structs etc. Hint: As shown in the presentation at the beginning of the session, text

followed by a number in parentheses like socket(2) are references to a manual page. socket is the name

of the page and 2 is the section number. To read the page use the man(1) command. For example to read

the manual of socket(2) do:

man 2 socket

Type q to exit the man page again.

The following functions, structs and man pages might be helpful to implement your TCP connection with C:

• struct sockaddr_in Holds an IP address and a port. Can be used as an argument to connect(2).

The structure layout is documented in ip(7). Recall that a dot (.) is used to access struct elements

and -> if the variable is a pointer to a struct.

• inet_aton(3) Converts a string to struct in_addr.

• htons(3) Converts a 16-bit integer from host to network byte order. As your VMs use Little Endian, and

network byte order is Big Endian you will have to use this to convert the destination port accordingly.

• socket(2) Used to obtain a descriptor. socket(2) is responsible for allocating descriptors for lo-

cal (AF_UNIX) connections and remote connections (AF_INET, AF_INET6) among others. To select a

protocol one has to use one of the SOCK_* flags. SOCK_STREAM is used for TCP, SOCK_DGRAM for UDP.

• connect(2) This connects a file descriptor obtained from socket(2) to a remote host.

• write(2) Write data to a file descriptor.

• read(2) Read data from a file descriptor.

• close(2) Closes a file descriptor (and the connection with it).

The following functions/built-ins can be of use as well:

• err(1) Exit the program with an error message.

• sizeof C built-in which returns the size of the argument in bytes as size_t.

• fwrite(3) Writes a buffer to a file. stdin, stdout and stderr are FILE * which read from standard

input and write to standard output/error respectively.



Implementation As a starting point for your implementation we provide a skeleton file on the course website

(skeleton.c), which already contains the relevant includes. Be careful to check the return values of the

system calls. err(1) exits the process and prints a message according to the value of errno(3).

Try to complete the skeleton file following the hints in the comments. Are you able to establish the TCP

connection?

Debugging You can see all outgoing TCP connections using the ss(8) command like this:

ss -t

Next steps Here are some ideas on how to extend your program:

• Use getaddrinfo(3) to convert www.lan to the corresponding IP address.

• Switch to use HTTP/1.1 instead. For that you will need to include a Host header.

• Allow the user to specify a hostname on the command line.


