o~ Networked Syst
ETHzurich Networked Systems

Spring 2021 Prof. L. Vanbever/ T. Biihler, R. Birkner, C. Busse-Grawitz, R. Yang

Communication Networks
Project 2: Reliable Transport
Deadline: June 04 2021 at 11.59pm

Now that you are all experts in routing, it is time to attack the remaining pillar of networking;:
reliable transport. Together with your group, your objective is to implement a TCP-like reliable
transport protocol capable of sending binary data over unreliable IP networks (like the Internet).

As a starting point, we provide you with a Python-based skeleton of a Go-Back-N (GBN)
sender and receiver. The receiver is basic (e.g., it only accepts in-sequence segments), but fully
functional, while the sender is almost fully functional. In addition, the receiver can also be
used to simulate an unreliable network by (pseudo-)randomly dropping either data segments or
acknowledgments.

The assignment starts with completing the basic GBN sender, and continues with improving
the protocol by implementing first Selective Repeat and second Selective Acknowledgments. A
bonus question further asks you to implement a Congestion Control mechanism at the sender.

Each group has to solve the task on a VM. All VMs are connected and you can test your
sender /receiver implementation with the receiver/sender of another group.

The rest of this document is organized as follow: Section [I| provides general information
about the project, including submission instructions. Section [2]introduces the GBN protocol
while Section [3] contains programming instructions and explains how to access and test your
implementation. Finally, Section [4] describes the tasks you have to solve.

1 General Information

This section tells you what to do if you have questions, how to submit your work and how it
will be graded. Furthermore, it explains our policies on academic integrity and misuse of the
resources.

1.1 If you have questions: use Slack or send us an email

Ask your questions in the #transport_project channel available at comm-net21.slack.com.
Please do not ask questions in the #general channel. You can also ask questions by email.

1.2 Online Q&A sessions on Slack

During the normal exercise timeslots (Thursdays from 10:15AM to 11:55AM), we will be available
on Slack to answer questions and help you with the project. We will offer additional Q& A sessions
to assist you as needed. The times of these additional sessions will be announced in a timely
manner. During all the official sessions, we will also be available via voice chat in case of bigger
problems. Outside of these timeslots, you can always post your questions on Slack, but you
might not get an immediate answer.

mailto:comm-net@ethz.ch

1.3 Collaborating over GitLab

Similar to the routing project you will once again have a GitLab repository available for your
group. You should have received an invitation (please contact us in case you have no access).
This time around, your VM has direct Internet connectivity and you can clone the repository
directly inside the VM, e.g. using (X your group number):

git clone https://gitlab.ethz.ch/nsg/lectures/lec_commnet/projects/2021/
transport_project/group—X.git

As you will quickly realize, all group members will most likely work on the same two files
sender.py and receiver.py which implement the GBN sender and receiver, respectively. There-
fore it can be helpful to use Git not only for the final submission, but also to collaborate within
your group. A good workflow can look like this.

First get (pull) the latest changes from the repository with git pull, then make your changes
e.g., in the sender.py file using your preferred editor. Once you are happy with the changes
add them to Git with git add sender.py and commit the changes with git commit -m "my
changes". Finally push the new changes with git push.

In addition, frequent commits to your GitLab repository are also an excellent way to backup
your work. You can also manually download e.g., the sender.py file with:

> scp -P [3000+X] root@snowball.ethz.ch:sender.py .

X your group number (note the dot at the end). Run this command on your local machine.

1.4 Submission instructions

For the final submission make sure that you commit and push your final sender and receiver
implementation, a PDF version of your report as well as the signed declaration of originality to
your GitLab repository.

Make sure that your report includes your group number as well as the name of the members in
your group. The maximum length for your PDF report is 10 A4 pages (including screenshots).
Normally the report for the transport project is much smaller than 10 pages. Follow these
instructions to submit your work:

UNIX systems In case you did not yet clone your repository, create a clone on your local
machine or your VM (preferred solution):

git clone https://gitlab.ethz.ch/nsg/lectures/lec_commnet/projects/2021/
transport_project/group—X.git

With X your group number. Then make sure that you have the latest updates from the
remote repository with git pull.

To submit your final sender and receiver implementations you either copy them to your local
machine or move them to the correct position inside your VM (location of the Git repository).

Then, you need to add all the files:

git add code/sender.py code/receiver.py
git add report/report.pdf
git add report/decl_of_originality.pdf

You can check with git status which files have been added. Finally, you need to make a
commit and push it to the remote repository:

git commit —m ’COMMIT MESSAGE’
git push

Finally, check whether you successfully pushed your code using the GitLab webinterface.

Windows systems Install [https://gitforwindows.org/| Then, you can use “Git Bash” and
follow the instructions for UNIX systems above.

1.5 Our grading policy

This assignment will be graded and counts for 10% of your final grade. There are a maximum of 10
points (plus one bonus point). Each group member will receive the same grade: min{l—i— E; ts 6}.
We will test a part of the implementation with automatic test sequences. It is therefore important

that you exactly follow the instructions and specifications in the questions.

1.6 Academic integrity

We adopt a strict zero tolerance policy when it comes to cheating. Cheating will immediately
result in the group failing the assignment and being reported to the ETH administration. In
particular, you can only do your assignment with the other members of your group. Do not look
at other groups’ implementation and do not copy code from anywhere. It is OK to discuss things
or find help online, but you must do the work by yourself.

Your implementation and report may be checked with automated tools so as to discover
plagiarism. Again, do not copy-and-paste code, text, etc.

To confirm that you are aware of this policy, we ask you to fill out and sign the declaration
of originality found in your GitLab repository in the report folder and upload it together with
your final submission. In previous years, we had group members cheating without the knowledge
of the rest of the group. Because of this, we ask you to clearly indicate which group members
worked on the different tasks. Note that, unless we detect any violations of our plagiarism policy,
the information provided under “main contributors for each task” will not influence your final
grade. As previously mentioned, every group member will get the same grade.

1.7 Misuse of the resources and infrastructure

It is prohibited to use or modify your VM in other ways than expressly allowed in this task
description. The forbidden misuse includes, but is not limited to overloading or DDoSing the
available test infrastructure, resource-/bandwidth-hungry programs, and the attempt to access
the VM of other groups. We monitor, investigate, and apply the appropriate disciplinary actions
for cases of misuse.

2 The Go-Back-N Protocol

unACK’ed forbidden

window ‘

01 2 3|4 56 7
|
ACKed ready to send

Figure 1: GBN sender window. On timeout, all segments in the window are retransmitted.

We will now look at the GBN protocol used during the project. As seen in the exercises, the
most basic GBN protocol uses a buffer and a timeout value at the sender, and the receiver uses
cumulative acknowledgments. The flow of data is uni-directional (sender to receiver). Similarly
to TCP, the protocol identifies DATA segments using sequence numbers. The sequence number
is initialized to 0 and is incremented by one for each new segment. The receiver acknowledges
correctly delivered segments by sending an ACK segment back. Concretely, as we are using
cumulative ACKs, the ACK contains the sequence number of the next expected data segment
(and consequently acknowledges all segments up to the next expected segment). In order to
provide actual reliability, the sender uses a timeout: If nothing happens for a given amount
of time (and the transmission is not yet complete), the sender retransmits all segments in the
current window (Figure . Finally, the sender must also implement flow control. The receiver

communicates its window size, and the sending window must be strictly smaller or equal to the
receiving window (to not overload the receiver).

Figure [2] describes the header of your protocol. It is composed of 6 mandatory fields along with
up to 9 optional fields. Table [2] explains the semantics of the mandatory fields. The optional
header is relevant for Section [I.3] and is introduced and explained as soon as it is required.

24 bits
1 7 16
Mandatory X
Type Options Segment Length
Header Length Sequence Number Window
Optional
Block Length Left edge 1st block Length 1st block
Left edge 2nd block Length 2nd block
Left edge 3rd block Length 3rd block
Payload
Figure 2: Header Format
Field Length Description
Type 1 bit Encodes the segment type. 0 indicates a DATA seg-
ment, while 1 indicates an ACK segment.
Options 7 bit Indicates the support of the optional SACK feature

(see . 0 indicates no support, while 1 indicates
SACK support.

Segment Length 16 bit Encodes the length of the payload in bytes. AIl DATA
segments contain a payload with 64 bytes of data,
except for the last DATA segment of a transfer which
can be shorter. The reception of a DATA segment
whose length is different than 64 indicates the end of
the data transfer.

Header Length 8 bit Indicates the total size of the header (including the
optional part, if present) in bytes.
Sequence Number 8 bit Indicates the segment sequence number. The se-

quence number always starts at 0 and is incremented
by 1 for each new DATA segment sent by the sender.
Inside an ACK segment, the sequence field carries
the sequence number of the next in-sequence segment
that is expected by the receiver.

Window 8 bit Encodes the size of the current window. In DATA
segments, this field indicates the size of the sender’s
sending window expressed as a number of segments.
In ACK segments, this field indicates the value of
the receiving window, also expressed as a number of
segments.

Table 1: Mandatory fields in the GBN header.

3 Programming instructions

3.1 VM

Similar to the routing project, each group has a VM available on our server. To access your VM,
you can use the password available on your GitLab repository. Use the login root, and the port
3000 + X, X being your group number. For example for group 27, here is how you can access
the VM with ssh.

> ssh -p 3027 root@snowball.ethz.ch

On your VM you find multiple files (use e.g., 1s to get an overview). sender.py and receiver.py
are the main files and already contain a skeleton implementation of the GBN protocol (note that
these two files are also available in the code folder in your GitLab repository). You will work
on these files to solve the questions in Section [d] The three starting scripts start_local.sh,
start_global.sh and start_test.sh (as well as client.py) are used to start and test your
sender and receiver implementation in various ways. Section [3.6] and explain these files in
more detail. Finally, the files sample_text.txt, to_send_test.txt and ETH logo.png will be
used as dummy data that you can transmit from your sender to your receiver.

Backup: Make sure that you back up your work (sender and receiver files) regularly. You can
either save them on your local machine e.g., by copying them using scp or (preferred) frequently
commit them to your GitLab repository.

3.2 Defining the Go-Back-N protocol header in Scapy

We use Scapy [I] to implement the GBN protocol with a state machine, as well as for receiving
and sending packets. Scapy implements a lot of the low-level details of packet handling for you.
First of all, the GBN header needs to be defined, such that Scapy is able to parse and create
packets using your GBN protocol. The following Python commands define the mandatory header
(Figure [2) using Scapy and are already implemented in the project template files on your VM.

class GBN(Packet):

name = ’'GBN’

fields_desc = [BitEnumField("type", 0, 1, {0: "data", 1: "ack"}),
BitField("options", 0, 7),
ShortField("len", None),
ByteField("hlen", 0),
ByteField("num", ®),
ByteField("win", 0)]

As you can see, the GBN class inherits from Scapy’s Packet class and has two properties: A
protocol name, and fields_desc, a list that defines the different header fields. Every field has
at least a name and a default value. The different field types (e.g. ByteField or ShortField)
specify the size of the field. For the BitFields type and options, the size is explicitly set to 1
and 7 (second argument). Remember that a byte is 8 bits long, while a short is 16 bits long.

Additionally, we can instruct Scapy about its relationship with other protocols, such as IP.
As discussed during the lecture, a packet normally consists of multiple headers from different
protocols along with a payload. Being a transport protocol, we place the GBN header right after
the IP header. In Scapy, we can use the following command to define this relationship:

bind_layers (IP, GBN, frag=0, proto=222)

As you can see, we have assigned the (unused) protocol number 222 to your GBN protocol.
Scapy now automatically sets the Protocol field in the IP header to 222 whenever a GBN packet
is sent, and similarly parses any IP packet with protocol number 222 as a GBN packet. Neat!

BEGIN

timeout_reached packet_in

RETRANSMIT send data packet if ACK_IN

re-send packets react to ack packets

space in window

all packets transmitted
and acknowledged

Figure 3: Sender automaton

3.3 Create and send a packet

Now that we have defined the GBN header, we can use it to create a packet. First, we build the
GBN header.

header_GBN = GBN(type=’data’, num=6, win=4)

In this example the type is data, the sequence number, num, is 6 and the window size, win,
4. All the fields for which we did not define a specific value are set to their default values. In
your implementation, you have to take care to set all header fields to their correct values (e.g.
the hlen field should contain the correct size of the header). Finally, we define an IP header
containing sender and receiver IPs, combine both headers with a payload, and send the packet:

send (IP(src=sender, dst=receiver) / header_GBN / payload)

For convenience of notation, Scapy overloads the "/" operator to glue different layers together.

3.4 Dissect a packet

Next, we take a look at how you can access different fields of a packet or print the packet content
to the terminal. In the following code section we assume that we have a packet called pkt:

pkt_num = pkt.getlayer (GBN).num
payload = pkt.getlayer (GBN).payload
print (pkt.show())

With the first command, we get the value of the num field of the GBN header (in Scapy,
headers are usually called ‘layers’). The second command returns the payload of the packet (the
transmitted message). Finally, the last command prints the whole packet to the terminal. In
most cases Scapy prints the packet in human readable form, which can assist you in debugging.

3.5 The GBN automaton

We realize the functionality of the GBN protocol as a state machine using the Scapy automaton
class, which is already implemented in the project template files on your VM. It is possible to
solve all the questions with the given automaton structure, but you are free to add additional
states. Figure [3| shows the sender automaton, which has five states (BEGIN, SEND, RETRANSMIT,
ACK_IN and END). The SEND state is the main state. It sends all the data packets in a given window
and then waits. Different transitions happen when specific conditions arise. For example, the

automaton could receive a packet from the receiver. It will then transit from the SEND state to
the ACK_IN state. Another possibility is that a timeout is reached (this means we did not get an
ACK from the receiver). The automaton then transitions from the SEND state to the RETRANSMIT
state, in which packets are re-sent. Afterwards, the automaton returns to the SEND state.

The automaton is implemented in the class GBNSender which inherits from the Automaton
class. First, we define a method called parse_args which handles the input arguments and
initializes important variables. Then, we define the master _filter method:

def master_filter(self, pkt):
return (IP in pkt and pkt[IP].src == self.receiver and GBN in pkt
and ICMP not in pkt)

Although the return expression in the method looks a bit cryptic, it is quite handy. It returns
only the packets which contain an IP and a GBN header and are coming from the receiver. Fur-
thermore, we block ICMP (Internet Control Message Protocol e.g., used by traceroute) packets,
which could confuse our GBN sender. Scapy applies this master filter every time it receives
any packet. The sender automaton therefore receives only packets of interest and thus you can
always assume that a received packet contains a GBN header and is coming from the receiver.

The Scapy automaton uses exceptions to go from one state to another. To go to a state, raise
it as an exception. For example, the following code triggers a transition to the SEND state:

raise self.SEND()

3.6 Start sender and receiver

We created two scripts to correctly start (and terminate) the sender and receiver.

Use ./start_local.sh to test your sender with your receiver implementation. In the script
you can change several parameters. The NBITS parameter defines the number of bits used to
encode the sequence number. For the sender, you can define its window size (SENDER_WIN_SIZE),
the file (IN_FILE) you want to transmit to the receiver as well as multiple variables to enable the
different questions (Q-4-2, Q-4_3, Q_4_4). For the receiver, you can also define the window size
(RECEIVER_WIN_SIZE) as well as the output file (OUT_FILE) to store the received data.

Finally, there are two special parameters for the receiver. DATA_L indicates the loss probability
of a data packet and ACK_L is the loss probability of an ACK packet. You can use these two
parameters to simulate packet loss between the sender and the receiver. The (pseudo-)random
number generator is initialized by a seed value (at the beginning of the receiver file), such that
the same packets get lost if you execute the script multiple times. You can also change the seed.

You can also execute ./start_global.sh to test your sender /receiver with the receiver/sender
of another group. In addition to the parameters described above, you can set NEIGHBOR to the
number of the other group. The group numbers are the same as in the Internet Routing project.
With the parameter TEST_SENDER_OR_RECEIVER you can indicate if you want to test your sender
(1) or receiver (2). As an example, if you are group 5 and you want to test your receiver with
the sender of group 11, you should use: NEIGHBOR=11, TEST_SENDER_OR_RECEIVER=2. Group 11
uses: NEIGHBOR=5, TEST_SENDER_OR_RECEIVER=1.

3.7 Test your GBN implementation

Make sure that you test your code thoroughly. This not only means verifying that your im-
plementation successfully transmits a file from your sender to your receiver, but also handles
corner cases well (e.g., sequence number wrap around and reordering) and interoperates with the
implementation of other groups. For this purpose, you can change various parameters within
the start script (./start_local.sh) as explained in To observe a wrap around faster, you
can, for example, set the number of bits used for the sequence number (NBITS) to a lower value.
Test your implementation with multiple other groups using the ./start_global.sh script.

Test framework Optionally, you can also test your code using our test framework. This way,
you run your code against our reference implementation (under various conditions) and receive
feedback. We provide a very basic test framework which runs your sender respectively receiver
implementation against test sequences and reports correct and unexpected behavior. Use the
script ./start_test.sh to start a test. There are parameters to set your sender and receiver
files and the specific test you want to perform (TEST_NUM). Do not change the other parameters.

Important: Even though passing all the tests is certainly a good sign that your implemen-
tation behaves as expected, it does not at all guarantee that you will receive a 6 in the end.
When we grade your submission, we will use different test sequences and also take into account
other parts of your work, for example your report.

Experimental new test framework (optional, not required) Following feedback from
students who did the project in previous years, we are currently working on a better and more
extensive test framework. In the future, it will allow you to test your code in more detail, provide
better feedback and even automatically test your implementation with the ones of other groups.
To get a better understanding of what is already working and to test if the new framework
supports the load of a large number of students we will enable the framework later during the
project (it is not activated at the beginning). We will make an announcement on Slack once it
is ready and we welcome all feedback. Note that this framework can be buggy, could crash or
report wrong results as it is still under development. To properly test your code use the “old”
framework as described above.

Once the new framework is ready, you can use the script ./student_start.sh to start a new
test. First, you need to set parameters in the start script including paths to your implementation
code and which test options you want to enable. If you run the script it will send your imple-
mentation code to the test framework and then test it against our reference implementation. For
example, if you want to test your sender implementation, you should set the path in the script to
your sender code, and once the script is started, it will send your sender code to the server and
test it against our receiver implementation with various settings according to the test options
enabled in the script. Once all the tests are finished, the test framework will generate a test
summary file and send it back to your VM.

The content of the test summary file (test_result.txt) depends on the performance of your
code. If your implementation crashes or does not finish within a specified time, you will receive a
run-time error in the summary file, but nothing else. If your implementation runs without errors
at the server side, you will find the test results for all the test cases you enabled in the script.
For example, if you enabled the test checker for sequence number overflow and your code passes
this test case, you will find a note such as “overflow_checker: All pass” in the summary file.

It might be the case that you start running the script and the console output suggests that
your test has not been successfully finished. There are several possibilities for that. It could be
that you have already started a test before and it has not yet finished. Since our test framework
only allows one test running for each group at any given time, your current test request will be
rejected. It could also be the case that the combination of parameters you set do not make sense
or are not (yet) supported by our framework. Apart from the above, it could also be that there
are some problems with our framework and it does not work for the time being. In all the above
cases, you will know whats happening from the console output.

3.8 Important points

Comment your code! As you will have to submit your code at the end of the assignment, it
is important that you ensure we can understand what your code is about.

Window Size To make your life easier, always choose a maximal window size (sender and
receiver) which is at most half of the maximal sequence number (2NVBIT9) Otherwise it is
possible to see two different packets with the same sequence number in the same window.

End of Transmission The sender terminates once all the packets are sent and the last packet
is acknowledged. Determining the end of the receiver is a bit harder, so we use the following

fact. All the payloads of the packets have a fixed size of 64 bytes. The last payload is normally
shorter. The receiver therefore looks for a shorter packet and terminates once an ACK for the
last packet is sent (already implemented). Note that this termination mechanism will fail, should
the data size be a multiple of 64 bytes. You then have to manually terminate the scripts.

Postel’s Law A last word of advise. In your implementation, we recommend to follow Postel’s
law, named after the Internet pioneer Jon Postel [2], who drafted the early TCP specification:

Be conservative in what you do, be liberal in what you accept from others.

Making sure your implementation can tolerate (i.e., not crash) wrong inputs is typically partic-
ularly handy during tests with other groups.

4 Assignment

In this section we describe the different tasks you have to solve during the project (including
the bonus question). Each task also contains detailed instructions on what to include in your
report. We advise you to solve the first part by Friday 21.05.2021 and the second part
by Friday 28.05.2021. This way you have a full week for the third and final part (project
deadline: 04.06.2021 at 11.59pm).

4.1 Complete the Go-Back-N sender (3 points)

As mentioned before, the Go-Back-N sender is almost functional. We ask you to complete it so
as to make it both functional and compliant with the protocol specification.

There are three missing parts separating the skeleton from a complete implementation. These
are clearly indicated with comments in the sender template. We advise you to complete them in
the following order.

First, complete the implementation of the SEND state by crafting segments with the appropri-
ate header and use the send command. Second, add support for dealing with acknowledgments
by completing the ACK_IN state. In particular, whenever the receiver acknowledges the reception
of a segment, you should remove it from your sending buffer and therefore open your window.
Observe that opening up the window could then enable the sender to send more segments (if
any). Third, add support for dealing with losses and timeouts by completing the RETRANSMIT
state. In Go-Back-N, a sender sends back all the unacknowledged segments upon timeout.

To include in your report Write a short paragraph for each of the three missing parts which
explains how you implemented the required functionality. Explain in detail, how you handle a
sequence number overflow. In addition, answer the following theoretical question: Assume
the sender just transmitted data segment 3, 4 and 5 and received as response two times an ACK
with number 3. You conclude that data segment 3 was lost and 4 and 5 reached the receiver.
Describe, for example, a network condition under which this conclusion is not true.

4.2 Implement Selective Repeat (3 points)

As discussed during the lecture, Go-Back-N is not the most efficient protocol when it comes to
dealing with failures. To improve performance, we ask you to implement Selective Repeat as
a recovery mechanism. The implementation will be split into two parts. In this question, we
ask you to adapt the behavior of the receiver and the sender without changing anything to the
headers of your protocol. In the next question (7 you will boost the performance of your
protocol once more by supporting Selective Acknowledgments (SACK).

4.2.1 Receiver (1 point)

The Go-Back-N receiver we provided you with only accepts segments in-sequence. To support
Selective Repeat, modify your receiver to buffer out-of-order segments and deliver (here, write
to the output file) more than one of them when missing segments are received.

ool

ACK: 4,4,4, 4,4,4, 4,4,4, .. timeout

Figure 4: At each red arrow the sender should re-send (Selective Repeat) data segment 4.

Hint Ask yourself which segments you should buffer and which you should not. In particular,
what should you do about out-of-window segments?

To include in your report Explain your implementation, in particular how you decide if an
out-of-order segment will be buffered. In addition, answer the following theoretical question:
Assume you have a receiver with unlimited buffer space. Why is it not always beneficial to buffer
every out-of-order segment, completely ignoring current sender and receiver windows?

4.2.2 Sender (2 points)

As of now, the sender does not do anything upon the reception of duplicated ACKs. As we have
seen in the lecture, duplicate ACKs are a sign of isolated loss and can be used by the sender to
prevent useless timeouts (similar to fast retransmit in TCP). We ask you to modify your sender
to preventively re-send the next unacknowledged segment, and only this one, upon the reception
of 3 duplicate acknowledgments.

As an example, look at Figure [d] Assume the sender receives the shown sequence of ACKs.
A red arrow indicates when the sender should re-send data segment 4. If the re-sent packets
are lost as well, the sender will eventually reach the timeout and retransmit all unacknowledged
segments from its buffer (as in question .

Hint As reordering can always happen in the network, you also need to account for out-of-
window ACKs. What effect should these ACKs have on the fast retransmissions?

Important Make sure that your sender is using Selective Repeat only if the parameter Q_4_2
is set to 1 in the starting scripts.

To include in your report Explain your implementation, especially under which conditions
you increase the duplicate ACK counter and when you reset it.

4.3 Implement Selective Acknowledgment (4 points)

With Selective Repeat, your protocol is now much more efficient than before, yet it can still suffer
from poor performance when multiple segments are lost. Indeed, with the limited information
contained in a cumulative acknowledgement, the sender learns at most one lost packet per RTT.

To improve this situation, we ask you to implement a Selective Acknowledgment (SACK)
mechanism similar to the one used by TCP [3]. With SACK, the receiver can inform the sender
about blocks of consecutive packets that it received correctly.

The support for SACK is negotiated using the Options field. The sender and the receiver
indicate that they support SACK by setting the field to 1 in all their packets. SACK should be
used only if both the sender and the receiver support it.

4.3.1 Receiver (2 points)

A receiver supporting SACK informs the sender of contiguous, but isolated blocks of data that
have been received and queued properly. For this, it uses the optional headers described in
Figure 2] The semantic of the fields is as follows:

a) Block Length (8 bits): Indicates the number of blocks (between 1 and 3) included in the
optional header.

10

Receiver

Correctly received segments: 0,1,2
Buffered out-of-order segments: 4,5,8,10,11,12,13,15,16,17

Generated SACK header after 3 4 2
receiving segment 17 (with ACK 3): 8 1
10 4

Sender

Retransmitted segments after receiving the SACK header: 3,6,7,9

Figure 5: SACK example for receiver and sender.

b) Left edge (8 bits): Indicates the sequence number of the first segment of a contiguous block
that has been correctly received.

c) Length of block (8 bits): Indicates the length of the contiguous block that has been correctly
received.

To simplify the protocol, the receiver can only advertise up to the first 3 contiguous, but
isolated blocks it has correctly received. Additional blocks are simply not advertised. Observe
that a block can be of unary size, in this case, the length of the block will be 1. If the receiver
has currently no blocks to report, the additional header should not be present at all.

When the missing segments are received, the receiver acknowledges the data normally by
advancing its window. In particular, the SACK option does not change anything to the semantic
and use of acknowledgments (encoded in the Sequence Number field). Figure shows an example
of an expected SACK header generated by the receiver.

Important The receiver should only generate SACK headers if the received data segments
from the sender contain a 1 in the options field (compare Figure [2]). The receiver will then also
always set a 1 in the options field of the generated ACKs (even if a particular ACK contains
no SACK header).

Hint To solve this questions, you have to modify the GBN header defined at the beginning
of the sender and receiver template. We want to be as efficient as possible. Therefore, if the
receiver is only acknowledging one block, the header fields for the second and third block should
not be present in the final packet. You can achieve that with Scapy using a new field type
called ConditionalField. The following code segment shows a simple example of a possible
fields_desc:

fields_desc = [
BitEnumField("type", 0, 1, {0: "data", 1: "ack"}),
BitField("options", 0, 7),
ShortField("len", None),
ByteField("hlen", 0),
ByteField("num", 0),
ByteField("win", 0),
ConditionalField(ByteField("test", 0), lambda pkt:pkt.hlen == 7)]

In this case, Scapy will only add the additional header field, called test, if you give the hlen
field a value of 7 during the packet creation. By using multiple conditional header fields with
different conditions, you can create the optional header from Figure 2]

To include in your report Explain your algorithm to find the SACK blocks from the data
in the out-of-order buffer, especially if a block spans over the sequence number overflow. Fur-
thermore, describe all the conditions that must hold for your receiver to add each of the optional
fields to the header. In addition, answer the following theoretical question: describe two other
optional header designs that the receiver could use to inform the sender of its current buffer state.

11

4.3.2 Sender (2 points)

When receiving a packet containing a SACK header, the data sender should retransmit all the
unacknowledged packets that fall outside of the boundaries of contiguous blocks by using its
buffer of transmitted but not yet acknowledged segments. See Figure [f] for an example. It is
important to note that the sender is not retransmitting unacknowledged packets after the last
SACK block (e.g. 15, 16 or 17 in the example). These packets may still be in transit and are not
necessarily lost. The sending window of the sender does not move after these retransmissions as
these do not constitute new transmissions.

Important Make sure that your sender is using SACK only if the corresponding parameter
Q-4_3 is set to 1. The sender then sets a 1 in the options field (compare Figure [2]) to inform the
receiver. Finally, the sender should either use SACK or Selective Repeat (§4.2) but not both at
the same time. You can control that with the two parameters Q_4_2 and Q_4_3 in the scripts.

To include in your report Explain how the sender finds the missing blocks from the re-
ceived SACK header. In addition, describe the SACK negotiation part of your implementation
(options field). Finally, answer the following theoretical question: as you probably realized
our SACK implementation generates many (unnecessary) packets as the sender is retransmitting
unacknowledged packets for each received SACK header. Explain a possible implementation
which uses the information from the SACK header, but reduces the number of retransmitted
segments.

4.4 Bonus question: Implement congestion control (1 point)

The protocol described above looks a lot like the original TCP in the sense that rate limiting is
only done by adapting the size of the receive window. Yet, not caring about network conditions
basically leads to the big congestion collapse you saw in the lecture.

For this bonus question, we ask you to implement some basic congestion control at the sender
side. To do so, you will now need to support a congestion window (CWND) at the sender side
along with mechanisms to increase and decrease it. In the course, we saw that TCP uses loss
signals (duplicated ACKs and timeouts) to detect congestion, a “Slow-Start” phase to quickly
estimate the bandwidth, and an “Additive-Increase Multiplicative-Decrease” phase to track the
bandwidth from thereon, in a fair way. You are welcome to implement the same kind of congestion
control as TCP, or invent a new one!

Important Make sure that your sender is using the congestion control mechanism only if the
corresponding parameter Q_4_4 is set to 1.

To include in your report Explain how your CWND interacts with the already existing
sender and receiver windows. Next, justify your choice of mechanisms to increase and decrease
the CWND. Finally, show us a graph of the CWND evolution during a transmission with failures.

References

[1] Scapy. [Online]. Available: |https://scapy.net/

[2] Wired. Remembering Jon Postel—And the Day He Hijacked the Internet. [Online].
Available: https://www.wired.com/2012/10/joe-postel/

[3] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgment
Options,” RFC 2018 (Proposed Standard), Oct. 1996. [Online]. Available: https:
/ /www.ietf.org/rfc/rfc2018.txt

12

https://scapy.net/
https://www.wired.com/2012/10/joe-postel/
https://www.ietf.org/rfc/rfc2018.txt
https://www.ietf.org/rfc/rfc2018.txt

	General Information
	If you have questions: use Slack or send us an email
	Online Q&A sessions on Slack
	Collaborating over GitLab
	Submission instructions
	Our grading policy
	Academic integrity
	Misuse of the resources and infrastructure

	The Go-Back-N Protocol
	Programming instructions
	VM
	Defining the Go-Back-N protocol header in Scapy
	Create and send a packet
	Dissect a packet
	The GBN automaton
	Start sender and receiver
	Test your GBN implementation
	Important points

	Assignment
	Complete the Go-Back-N sender mygray(3 points)
	Implement Selective Repeat mygray(3 points)
	Receiver mygray(1 point)
	Sender mygray(2 points)

	Implement Selective Acknowledgment mygray(4 points)
	Receiver mygray(2 points)
	Sender mygray(2 points)

	Bonus question: Implement congestion control mygray(1 point)

