
Communication Networks

Prof. Laurent Vanbever

Communication Networks | Mon 10 May 2021 1 of 11

Communication Networks

Spring 2021

ETH Zürich (D-ITET)

Laurent Vanbever

May 10 2021

Materials inspired from Scott Shenker & Jennifer Rexford

nsg.ee.ethz.ch

Last week on

Communication Networks

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We continued our journey up the layers,

and started to look at the transport layer

What Problems Should Be Solved Here?

● Data delivering, to the correct application
● IP just points towards next protocol
● Transport needs to demultiplex incoming data (ports)

● Files or bytestreams abstractions for the applications
● Network deals with packets
● Transport layer needs to translate between them

● Reliable transfer (if needed)
● Not overloading the receiver
● Not overloading the network

UDP: Datagram messaging service

● No-frills extension of “best-effort” IP

● UDP provides only two services to the App layer
● Multiplexing/Demultiplexing among processes
● Discarding corrupted packets (optional)

● UDP provides a connectionless, unreliable transport service

TCP: Reliable, in-order delivery

● TCP provides a connection-oriented, reliable, bytestream
transport service

● What UDP provides, plus:
● Retransmission of lost and corrupted packets

● Flow control (to not overflow receiver)
● Congestion control (to not overload network)
● “Connection” set-up & tear-down

Sockets

● A socket is a software abstraction by which an application process
exchanges network messages with the (transport layer in the)
operating system

● socketID = socket(…, socket.TYPE)
● socketID.sendto(message, …)
● socketID.recvfrom(…)

● Two important types of sockets
● UDP socket: TYPE is SOCK_DGRAM
● TCP socket: TYPE is SOCK_STREAM

Communication Networks | Mon 10 May 2021 2 of 11

Multiplexing and Demultiplexing
● Host receives IP datagrams

● Each datagram has source and destination IP address,
● Each segment has source and destination port number

● Host uses IP addresses and port numbers to direct the segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

A TCP/UDP socket is identified by a 4-tuple:

(src IP, src port, dst IP, dest port)

Let's say you open 5 tabs to google.ch

Your IP: 129.132.19.1 Google's IP: 172.217.168.3

1 2 3 4 5

Client OS

129.132.19.1 172.217.168.3 4431

129.132.19.1 172.217.168.3 4432

129.132.19.1 172.217.168.3 4433

129.132.19.1 172.217.168.3 4434

129.132.19.1 172.217.168.3 4435

src IP src port dest IP dest port

Server OS

172.217.168.3 129.132.19.14431

172.217.168.3 129.132.19.14432

172.217.168.3 129.132.19.14433

172.217.168.3 129.132.19.14434

172.217.168.3 129.132.19.14435

src IP src port dest IP dest port

54001

55240

48472

35456

42001

54001

55240

48472

35456

42001

socket

socket

This week on

Communication Networks

Congestion
Control

UDP / TCP

starting from
slide 51/107

Congestion
Control

UDP / TCP

starting from
slide 51/107

Congestion
Control

UDP / TCP

Communication Networks | Mon 10 May 2021 3 of 11

Because of traffic burstiness and lack of BW reservation,

congestion is inevitable

If many packets arrive within

the node cannot keep up anymore

a short period of time

Congestion is harmful

average packet arrival rate a

transmission rate of outgoing link

average bits arrival rate

R

fixed packets length L

La

traffic intensity La/R

[packet/sec]

[bit/sec]

[bit

[bit/sec]

When the traffic intensity is >1, the queue will increase

without bound, and so does the queuing delay

Golden rule Design your queuing system,

so that it operates far from that point

La/R 1

A
ve

ra
g
e

q
u
eu

in
g
 d

el
ay

When the traffic intensity is <=1,

queueing delay depends on the burst size

The Internet almost died of congestion in 1986

throughput collapsed from 32 Kbps to… 40 bps

Recent resurgence of research interest after brief lag

new methods (ML), context (Data centers), requirements

Van Jacobson saved us with Congestion Control

his solution went right into BSD

Congestion is not a new problem

The Internet almost died of congestion in 1986

throughput collapsed from 32 Kbps to… 40 bps

original

behavior

On connection,

nodes send full window of packets

Upon timer expiration,

retransmit packet immediately

window-sized burst of packetsnet effect

meaning sending rate only limited by flow control

Communication Networks | Mon 10 May 2021 4 of 11

Sudden load increased the round-trip time (RTT)

faster than the hosts’ measurements of it

As RTT exceeds the maximum retransmission interval,

hosts begin to retransmit packets

This phenomenon is known as congestion collapse

Hosts are sending each packet several times,

eventually some copies arrive at the destination.

Increase in network load results in

a decrease of useful work done

Load

Th
ro

ug
hp

ut
D

el
ay

knee cliff

Knee point after which

throughput

delay

increases

increases quickly

slowly

Cliff point after which

throughput

delay

decreases

tends to infinity

quickly

congestion
collapse

Van Jacobson saved us with Congestion Control

his solution went right into BSD

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

Congestion control differs from flow control

both are provided by TCP though

Flow control

Congestion control

prevents one fast sender from

prevents a set of senders from

overloading the network

overloading a slow receiver

TCP solves both using two distinct windows

Flow control

Congestion control

prevents one fast sender from

prevents a set of senders from

overloading the network

overloading a slow receiver

solved using a receiving window

solved using a “congestion” window

Congestion Window

CWND

How many bytes can be sent

without overflowing the routers?

Receiving Window

RWND

How many bytes can be sent

without overflowing the receiver buffer?

based on network conditions

based on the receiver input

Sender Window minimum(CWND, RWND)

The sender adapts its sending rate

based on these two windows

Communication Networks | Mon 10 May 2021 5 of 11

The 2 key mechanisms of Congestion Control

detecting

congestion

reacting to

congestion

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

Approach #1 Network could tell the source

but signal itself could be lost

Approach #2 Measure packet delay

but signal is noisy

Approach #3 Measure packet loss

fail-safe signal that TCP already has to detect

delay often varies considerably

There are essentially three ways

to detect congestion

Approach #3 Measure packet loss

fail-safe signal that TCP already has to detect

Packet dropping is the best solution

delay- and signaling-based methods are hard & risky

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it
detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

it depends on the problem we are solving…

TCP approach is to gently increase when not congested

and to rapidly decrease when congested

What increase/decrease function

should we use?

question

Remember that Congestion Control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

Communication Networks | Mon 10 May 2021 6 of 11

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

#1

The goal here is to quickly get a first-order estimate

of the available bandwidth

Increase cwnd = 1

cwnd += 1

initially

policy

Intuition Start slow but rapidly increase

until a packet drop occurs

upon receipt of an ACK

This increase phase, known as slow start,

corresponds to an… exponential increase of CWND!

D A D D A A D D

Src

Dst

D D

1 2 43

A A A A

8

slow start is called like this only because of starting point

The problem with slow start is that it can result in

a full window of packet losses

Example Assume that CWND is just enough to “fill the pipe”

After one RTT, CWND has doubled

All the excess packets are now dropped

Solution We need a more gentle adjustment algorithm

once we have a rough estimate of the bandwidth

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

#2

The goal here is to track the available bandwidth,

and oscillate around its current value

Two possible variations

cwnd = a * cwnd

cwnd = b + cwnd

Multiplicative Increase or Decrease

Additive Increase or Decrease

… leading to four alternative design

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

To select one scheme, we need to consider

the 3rd problem: fairness

Communication Networks | Mon 10 May 2021 7 of 11

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#3

TCP notion of fairness: 2 identical flows

should end up with the same bandwidth

queue (20 pkts)host A

50 pkts/RTT

host B

capacity

Consider first a single flow between A and B

and AIMD

congestion CWND increases by one packet every ACK

congestionupon

without

CWND decreases by a factor 2

0

10

20

30

40

50

60

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

Backlog in router (pkts)
Congested if > 20

Rate (pkts/RTT)

A’s throughput

B’s throughput

We can analyze the system behavior

using a system trajectory plot

Link capacity: 1 Mbps

A’s throughput

B’s throughput

1

1

efficiency line

The system is efficient if the capacity is fully used,

defining an efficiency line where a + b = 1

A’s throughput

B’s throughput

1

1

efficiency line

The goal of congestion control is to bring the system

as close as possible to this line, and stay there

A’s throughput

B’s throughput

1

1

congestion

Communication Networks | Mon 10 May 2021 8 of 11

1

1

under-utilization

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

The system is fair whenever A and B have equal

throughput, defining a fairness line where a = b

A’s throughput

B’s throughput

1

1

fairness line

A’s throughput

B’s throughput

B gets more than A

1

1

fairness line

A’s throughput

B’s throughput

A gets more than B

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

inefficient & unfair

.2

.5

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

congested .7

.5

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

efficient & unfair .3

.7

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

efficient & fair .5

.5

Communication Networks | Mon 10 May 2021 9 of 11

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

AIAD does not converge to fairness, nor efficiency:

the system fluctuates between two fairness states

Adding a constant:

move along 45 deg

state 1 state 2

0

15

30

45

60

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494

AIAD does not converge to fairness, nor efficiency:

the system fluctuates between two fairness states

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

MIMD does not converge to fairness, nor efficiency:

the system fluctuates along a equi-fairness line

equi-fairness line

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

MIAD converges to a totally unfair allocation,

favoring the flow with a greater rate at the beginning

A’s throughput

B’s throughput

1

1

efficiency line

If flows start along the fairness line, MIAD fluctuates

along it, yet deviating from it at the slightest change

fairness line

Communication Networks | Mon 10 May 2021 10 of 11

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

Intuition During increase,

both flows gain bandwidth at the same rate

During decrease,

the faster flow releases more

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

0

15

30

45

60

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

In practice,

TCP implements AIMD

In practice,

TCP implements AIMD

After each ACK,

Increment cwnd by 1/cwnd

linear increase of max. 1 per RTT

Implementation

When does a sender leave slow-start

and start AIMD?
Question

Introduce a slow start treshold,

adapt it in function of congestion:

on timeout, sstresh = CWND/2

Initially:

 cwnd = 1
 ssthresh = infinite
New ACK received:

 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
Timeout:

 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

TCP congestion control in less than 10 lines of code

Time

cwnd

Timeout

Slow
Start

AIMD

ssthresh

Timeout

Slow
Start

Slow
Start

AIMD

The congestion window of a TCP session typically

undergoes multiple cycles of slow-start/AIMD

Communication Networks | Mon 10 May 2021 11 of 11

Going back all the way back to 0 upon timeout

completely destroys throughput

solution Avoid timeout expiration…

which are usually >500ms

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it

this is known as a “fast retransmit”

TCP automatically resends a segment

after receiving 3 duplicates ACKs for it

this is known as “fast recovery”

After a fast retransmit, TCP switches back to AIMD,

without going all way the back to 0

Initially:

 cwnd = 1
 ssthresh = infinite
New ACK received:

 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
 dup_ack = 0
Timeout:

 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

TCP congestion control (almost complete)

Duplicate ACKs received:

 dup_ack ++;
 if (dup_ack >= 3):
 /* Fast Recovery */
 ssthresh = cwnd/2
 cwnd = ssthresh

Initially:

 cwnd = 1
 ssthresh = infinite
New ACK received:

 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
 dup_ack = 0
Timeout:

 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

dup_ack = 0

Duplicate ACKs received:

 dup_ack ++;
 if (dup_ack >= 3):
 /* Fast Recovery */
 ssthresh = cwnd/2
 cwnd = ssthresh

Time

cwnd

Timeout

Slow
Start

AIMD

Timeout

Slow
Start

Slow
Start

AIMD

AIMD

3 dups ACKs

Congestion control makes TCP throughput

look like a “sawtooth”

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We now have completed the transport layer (!)

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

