
Communication Networks

Prof. Laurent Vanbever

Communication Networks | Mon 8 March 2021 1 of 9

Communication Networks

Spring 2021

ETH Zürich (D-ITET)

Laurent Vanbever

8 March 2021

Materials inspired from Scott Shenker & Jennifer Rexford

nsg.ee.ethz.ch

Last week on

Communication Networks
What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?

#4

Communication Networks

Part 1: General overview

The Internet should allow

processes on different hosts

everything else is just commentary…

to exchange data

In practice, there exists a lot of network protocols.

How does the Internet organize this?

Each layer provides a service to the layer above  

by using the services of the layer directly below it

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?#5

Communication Networks

Part 1: General overview

Communication Networks | Mon 8 March 2021 2 of 9

throughputlossdelay

How long does it take for a packet to reach the destination

What fraction of packets sent to a destination are dropped?

At what rate is the destination receiving data from the source?

A network connection is characterized by

its delay, loss rate and throughput

This week on

Communication Networks

We will start diving in the fundamental

challenges underlying networking

routing
reliable

delivery
routing

reliable

delivery

How do you guide IP packets

from a source to destination?

How do you ensure reliable transport

on top of best-effort delivery?

routing
reliable

delivery

How do you guide IP packets

from a source to destination?

Essentially,

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

#2

#3

BGP

SDN

Intuition Example

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

BGP

SDN

Essentially,

there are three ways to compute valid routing state

The easiest way to avoid loops is to route traffic

on a loop-free topology

Take an arbitrary topology

Build a spanning tree and

ignore all other links

Done!

simple algorithm

Why does it work? Spanning-trees have only one path

between any two nodes

Communication Networks | Mon 8 March 2021 3 of 9

In practice,

there can be many spanning-trees for a given topology

Spanning-Tree #1

Spanning-Tree #2 Spanning-Tree #3

We’ll see how to compute spanning-trees in 2 weeks.

For now, assume it is possible

literally just flood

the packets everywhere

Once we have a spanning tree,

forwarding on it is easy

A

B

When a packet arrives,

simply send it on all ports

While flooding works,

it is quite wasteful

A

B

Useless transmissions

Communication Networks | Mon 8 March 2021 4 of 9

The issue is that nodes do not know their

respective locations

Nodes can learn how to reach nodes

by remembering where packets came from

then

intuition

switch X can use port 4

to reach node A

flood packet from node A

entered switch X on port 4

if

A

B

A

Node A can be reached

through this port

B

A

B

A

B

All the green nodes learn how to reach A

A

All the green nodes learn how to reach A

B

A

All the nodes know on which port

A can be reached

B

Communication Networks | Mon 8 March 2021 5 of 9

A

B

B answers back to A

enabling the green nodes to also learn where B is

A

B

There is no need for flooding here

as the position of A is already known by everybody

A

B

Learning is topology-dependent

The blue nodes only know how to reach A (not B)

Routing by flooding on a spanning-tree

in a nutshell

When destination answers, some switches learn where it is

some because packet to you is not flooded anymore

Flood first packet to node you’re trying to reach

all switches learn where you are

The decision to flood or not is done on each switch

depending on who has communicated before

Spanning-Tree in practice

used in Ethernet

advantages disadvantages

plug-and-play

configuration-free

automatically adapts

to moving host

slow to react to failures

mandate a spanning-tree

eliminate many links from the topology

slow to react to host movement

Essentially,

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#2

BGP

SDN

If each router knows the entire graph,  

it can locally compute paths to all other nodes

Initialization Loop

Once a node u knows the entire topology,  

it can compute shortest-paths using Dijkstra’s algorithm

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S:

D(v) = min{D(v), D(w) + c(w,v)}

while not all nodes in S:S = {u}

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v)

else:

D(v) = ∞

Communication Networks | Mon 8 March 2021 6 of 9

for all nodes v:

if (v is adjacent to u):

else:

S = {u}

u is the node running the algorithm

D(v) = c(u,v) c(u,v) is the weight of the link 

connecting u and v

D(v) = ∞

D(v) is the smallest distance  

currently known by u to reach v

2 1

1

2

1
4

5

4 3

Let’s compute the shortest-paths

from u

u

3

A B

C D

E F

G

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

Initialization

S = {u}

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v)

else:

D(v) = ∞

2 1

1

2

1
4

5

4 3

D is initialized based on u’s weight,

and S only contains u itself

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

S = {u}

u

2 1

1

2

1
4

5

4 3

3

A B

C D

E F

G

u

Loop

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S:

D(v) = min{D(v), D(w) + c(w,v)}

while not all nodes in S:

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

u

smallest D(w)

S = {u}

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

u

add E to S

S = {u, E}

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

3

∞

∞

6

3

2

u D(v) = min{∞, 2 + 1}

S = {u, E}

D(v) = min{∞, 2 + 4}

Communication Networks | Mon 8 March 2021 7 of 9

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

3

u

S = {u, E}

3

6

2

Now, do it by yourself

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

5

6

8

3

u 3

6

2

Here is the final state

S = {u, A,

 B, C, D, E,

 F,G}

This algorithm has a O(n2) complexity

where n is the number of nodes in the graph

iteration #1 search for minimum through n nodes

iteration #2 search for minimum through n-1 nodes

iteration n search for minimum through 1 node

n(n+1) operations => O(n2)

2

Better implementations rely on a heap

to find the next node to expand,

bringing down the complexity to O(n log n)

This algorithm has a O(n2) complexity

where n is the number of nodes in the graph

2 1

1

2

1
4

5

4 3

3

Forwarding table

A B

C D

E F

G

A

B

C

D

E

F

G

A

E

A

u

E

E

From the shortest-paths,

u can directly compute its forwarding table

destination next-hop

A

E

To build this global view

routers essentially solve a jigsaw puzzle

2 1

1

2

1
4

5

4 3

Initially,

routers only know their ID and their neighbors

u

3

A B

C D

E F

G

D only knows,

it is connected to B and C

along with the weights to reach them

(by configuration)

2 1

1

2

1
4

5

4 3

Each routers builds a message (known as Link-State)

and floods it (reliably) in the entire network

u

3

A B

C

E F

G

D edge (D,B); cost: 1

edge (D,C); cost: 4

D’s Advertisement

Communication Networks | Mon 8 March 2021 8 of 9

required for correctness

see exercise

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

At the end of the flooding process,

everybody share the exact same view of the network

cf. exercice session

for the dynamic case

Dijkstra will always converge to a unique stable state

when run on static weights

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector#3

BGP

SDN

Essentially,

there are three ways to compute valid routing state

Instead of locally compute paths based on the graph,

paths can be computed in a distributed fashion

Let dx(y) be the cost of the least-cost path

known by x to reach y

Let dx(y) be the cost of the least-cost path

known by x to reach y

Each node bundles these distances

into one message (called a vector)

that it repeatedly sends to all its neighborsuntil convergence

Let dx(y) be the cost of the least-cost path

known by x to reach y

Each node bundles these distances

into one message (called a vector)

that it repeatedly sends to all its neighbors

Each node updates its distances

based on neighbors’ vectors:

dx(y) = min{ c(x,v) + dv(y) } over all neighbors v

until convergence 2 1

1

2

1
4

5

4 3

Let’s compute the shortest-path

from u to D

u

3

A B

C D

E F

G

Communication Networks | Mon 8 March 2021 9 of 9

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

dx(y) = min{ c(x,v) + dv(y) }

over all neighbors v

du(D) = min{ c(u,A) + dA(D),

 c(u,E) + dE(D) }

The values computed by a node u

depends on what it learns from its neighbors (A and E)

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

dB(D) = 1

dC(D) = 4

To unfold the recursion,

let’s start with the direct neighbor of D

2 1

1

2

1
4

5

4 3

B and C announce their vector to their neighbors,

enabling A to compute its shortest-path

u

3

A B

C D

E F

G

dA(D) = min { 2 + dB(D),

 1 + dC(D)}

1

4
= 3

2 1

1

2

1
4

5

4 3

As soon as a distance vector changes,

each node propagates it to its neighbor

u

3

A B

C D

E F

G

dE(D) = min { 1 + dC(D),

 4 + dG(D),

 2 + du(D)}

= 5

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

= 6

du(D) = min { 3 + dA(D),

 2 + dE(D) }

Eventually, the process converges

to the shortest-path distance to each destination

the one which advertised the smallest cost

As before, u can directly infer its forwarding table

by directing the traffic to the best neighbor

Evaluating the complexity of DV is harder,

we’ll get back to that in a couple of weeks

Next week on

Communication Networks

Reliable transport!

