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Last week on 

Communication Networks



What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?

#4

Communication Networks

Part 1: General overview
 



The Internet should allow

processes on different hosts

everything else is just commentary…

to exchange data



In practice, there exists a lot of network protocols. 

How does the Internet organize this?



Each layer provides a service to the layer above  

by using the services of the layer directly below it

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits



What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?#5

Communication Networks

Part 1: General overview
 



throughputlossdelay

How long does it take for a packet to reach the destination

What fraction of packets sent to a destination are dropped?

At what rate is the destination receiving data from the source?

A network connection is characterized by 

its delay, loss rate and throughput



This week on 

Communication Networks



We will start diving in the fundamental  

challenges underlying networking

routing
reliable 

delivery



routing
reliable 

delivery

How do you guide IP packets 

from a source to destination?

How do you ensure reliable transport 

on top of best-effort delivery?



routing
reliable 

delivery

How do you guide IP packets 

from a source to destination?



Essentially,  

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

#2

#3

BGP

SDN

Intuition Example



Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

BGP

SDN

Essentially,  

there are three ways to compute valid routing state



The easiest way to avoid loops is to route traffic  

on a loop-free topology

Take an arbitrary topology

Build a spanning tree and  

ignore all other links

Done!

simple algorithm

Why does it work? Spanning-trees have only one path 

between any two nodes



In practice,  

there can be many spanning-trees for a given topology



Spanning-Tree #1



Spanning-Tree #2



Spanning-Tree #3



We’ll see how to compute spanning-trees in 2 weeks.  

For now, assume it is possible



literally just flood  

the packets everywhere

Once we have a spanning tree, 

forwarding on it is easy



A

B

When a packet arrives,  

simply send it on all ports



While flooding works,  

it is quite wasteful

A

B

Useless transmissions



The issue is that nodes do not know their 

respective locations



Nodes can learn how to reach nodes  

by remembering where packets came from

then

intuition

switch X can use port 4  

to reach node A

flood packet from node A  

entered switch X on port 4 

if 



A

B



A

Node A can be reached 

through this port

B



A

B



A

B

All the green nodes learn how to reach A



A

All the green nodes learn how to reach A

B



A

All the nodes know on which port 

A can be reached

B



A

B

B answers back to A  

enabling the green nodes to also learn where B is



A

B

There is no need for flooding here 

as the position of A is already known by everybody



A

B

Learning is topology-dependent 

The blue nodes only know how to reach A (not B)



Routing by flooding on a spanning-tree 

in a nutshell

When destination answers, some switches learn where it is

some because packet to you is not flooded anymore

Flood first packet to node you’re trying to reach

all switches learn where you are

The decision to flood or not is done on each switch

depending on who has communicated before



Spanning-Tree in practice 

used in Ethernet

advantages disadvantages

plug-and-play 

configuration-free

automatically adapts 

to moving host

slow to react to failures

mandate a spanning-tree 

eliminate many links from the topology

slow to react to host movement



Essentially,  

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#2

BGP

SDN



If each router knows the entire graph,  

it can locally compute paths to all other nodes



Initialization Loop

Once a node u knows the entire topology,  

it can compute shortest-paths using Dijkstra’s algorithm

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S: 

D(v) = min{D(v), D(w) + c(w,v)} 

while not all nodes in S:S = {u} 

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v) 

else:

D(v) = ∞ 



for all nodes v:

if (v is adjacent to u):

else:

S = {u} 

u is the node running the algorithm

D(v) = c(u,v) c(u,v) is the weight of the link 

connecting u and v

D(v) = ∞ 

D(v) is the smallest distance  

currently known by u to reach v
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Let’s compute the shortest-paths 

from u

u

3

A B

C D

E F

G
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u

3

A B

C D

E F

G

Initialization

S = {u} 

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v) 

else:

D(v) = ∞ 
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D is initialized based on u’s weight, 

and S only contains u itself

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞
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S = {u}

u
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3

A B

C D

E F

G

u

Loop

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S: 

D(v) = min{D(v), D(w) + c(w,v)} 

while not all nodes in S:
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D(.) =
A B

C D

E F

G
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u

smallest D(w)

S = {u}



2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G
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G
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∞

∞
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u

add E to S

S = {u, E}
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D(.) =
A B

C D

E F

G
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∞
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∞

∞
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u D(v) = min{∞, 2 + 1} 

S = {u, E}

D(v) = min{∞, 2 + 4} 



2 1

1

2

1
4

5

4 3

3

D(.) =
A B
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u

S = {u, E}
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Now, do it by yourself
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D(.) =
A B

C D

E F

G
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u 3
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Here is the final state

S = {u, A, 

      B, C, D, E, 

      F,G}



This algorithm has a O(n2) complexity 

where n is the number of nodes in the graph 

iteration #1 search for minimum through n nodes

iteration #2 search for minimum through n-1 nodes

iteration n search for minimum through 1 node

n(n+1) operations => O(n2)

2



Better implementations rely on a heap  

to find the next node to expand,  

bringing down the complexity to O(n log n)

This algorithm has a O(n2) complexity 

where n is the number of nodes in the graph 
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Forwarding table

A B

C D

E F

G

A

B

C

D

E

F

G

A

E

A

u

E

E

From the shortest-paths,  

u can directly compute its forwarding table

destination next-hop

A

E



To build this global view 

routers essentially solve a jigsaw puzzle



2 1

1

2

1
4

5

4 3

Initially, 

routers only know their ID and their neighbors

u

3

A B

C D

E F

G

D only knows,  

it is connected to B and C

along with the weights to reach them 

(by configuration)
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Each routers builds a message (known as Link-State) 

and floods it (reliably) in the entire network

u

3

A B

C

E F

G

D edge (D,B); cost: 1

edge (D,C); cost: 4

D’s Advertisement



required for correctness 

see exercise
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u

3

A B

C D

E F

G

At the end of the flooding process, 

everybody share the exact same view of the network



cf. exercice session 

for the dynamic case

Dijkstra will always converge to a unique stable state 

when run on static weights



Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector#3

BGP

SDN

Essentially,  

there are three ways to compute valid routing state



Instead of locally compute paths based on the graph, 

paths can be computed in a distributed fashion



Let dx(y) be the cost of the least-cost path 

known by x to reach y



Let dx(y) be the cost of the least-cost path 

known by x to reach y

Each node bundles these distances 

into one message (called a vector) 

that it repeatedly sends to all its neighborsuntil convergence



Let dx(y) be the cost of the least-cost path 

known by x to reach y

Each node bundles these distances 

into one message (called a vector) 

that it repeatedly sends to all its neighbors

Each node updates its distances 

based on neighbors’ vectors:

dx(y) = min{ c(x,v) + dv(y) } over all neighbors v

until convergence
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Let’s compute the shortest-path 

from u to D

u

3

A B

C D

E F

G
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u
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A B

C D

E F

G

dx(y) = min{ c(x,v) + dv(y) }

over all neighbors v

du(D) = min{ c(u,A) + dA(D), 

                    c(u,E) + dE(D) }

The values computed by a node u 

depends on what it learns from its neighbors (A and E)
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u

3

A B

C D

E F

G

dB(D) = 1

dC(D) = 4

To unfold the recursion, 

let’s start with the direct neighbor of D
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B and C announce their vector to their neighbors, 

enabling A to compute its shortest-path

u

3

A B

C D

E F

G

dA(D) = min { 2 + dB(D),  

                     1 + dC(D)}

1

4
= 3
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As soon as a distance vector changes, 

each node propagates it to its neighbor

u

3

A B

C D

E F

G

dE(D) = min { 1 + dC(D),  

                     4 + dG(D), 

                     2 + du(D)}

= 5



2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

= 6

du(D) = min { 3 + dA(D), 

                     2 + dE(D) }

Eventually, the process converges 

to the shortest-path distance to each destination



the one which advertised the smallest cost

As before, u can directly infer its forwarding table 

by directing the traffic to the best neighbor



Evaluating the complexity of DV is harder, 

we’ll get back to that in a couple of weeks



Next week on 

Communication Networks

Reliable transport!
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