
Communication Networks

Spring 2020

ETH Zürich

April 23 2020

Rüdiger Birkner, TA

https://comm-net.ethz.ch/

Thomas Holterbach, TA

Noah Hütter, TA

Eric Marty, TA

http://comm-net.ethz.ch/

Wrap-up of the routing project

Intro to the reliable transport project

Intro to Python and Git

Communication Networks

Exercise 10

Current assignment

Wrap-up of the routing project

Intro to the reliable transport project

Intro to Python and Git

Communication Networks

Exercise 10

Current assignment

Communication Networks 2020

How we build a mini-Internet

Thomas Holterbach

https://comm-net.ethz.ch/

ETH Zurich (D-ITET)

April 23, 2020

You did it: 100% connectivity!

Many of you managed to solve the bonus question!

Today, we will see how we designed the mini-Internet

snowball.ethz.ch

We rely on virtualisation

Option #1: virtual machines Option #2: linux containers

We rely on virtualisation

Option #1: virtual machines Option #2: linux containers

we used VMs between

2016 and 2019

We rely on virtualisation

Option #1: virtual machines Option #2: linux containers

we used VMs between

2016 and 2019

This year

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

Each router, switch and host runs in its dedicated container

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

Each router, switch and host runs in its dedicated container

We virtually connect the containers to build the mini-Internet

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

We use additional containers for the different monitoring services

docker container

virtual link

MATRIX

DNS

MEASUREMENT

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

We use additional containers for the different monitoring services

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

We use "proxy" containers so that you can only access your virtual devices

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded

ssh -p 2001 root@snowball

SSH Proxy
Group 1

SSH Proxy
Group 2

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

We use "proxy" containers so that you can only access your virtual devices

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

We use "proxy" containers so that you can only access your virtual devices

ssh -L local_port:remote_ip:remote_port user@remote_ip

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

We use "proxy" containers so that you can only access your virtual devices

ssh -L local_port:remote_ip:remote_port user@remote_ip

2001

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

We use "proxy" containers so that you can only access your virtual devices

ssh -L local_port:remote_ip:remote_port user@remote_ip

IP of SSH Proxy Group1

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

We use "proxy" containers so that you can only access your virtual devices

ssh -L local_port:remote_ip:remote_port user@remote_ip

22

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

We use "proxy" containers so that you can only access your virtual devices

ssh -L local_port:remote_ip:remote_port user@remote_ip

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

SSH
(goto.sh)

We use "proxy" containers so that you can only access your virtual devices

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

SSH
(goto.sh)

We use "proxy" containers so that you can only access your virtual devices

openvpn —config client.conf

Router 1

Router p

switch 1

switch k

host 1

host n

Group 1

Router 1

Router p

switch 1

switch k

host 1

host n

Group X

snowball.ethz.ch

network
interface

docker container

virtual link

MATRIX

DNS

MEASUREMENT

ping results uploaded
SSH Proxy

Group 1

SSH Proxy
Group 2

ssh -p 2001 root@snowball SSH port
forwarding

SSH
(goto.sh)

We use "proxy" containers so that you can only access your virtual devices

openvpn —config client.conf

Our server can easily run a 78-ASes mini-Internet

For further information about the mini-Internet: mini-inter.net

Open source implementation

~3700 lines of bash

Open source implementation

~3700 lines of bash

Published in SIGCOMM CCR’20

An Open Platform to Teach How the Internet Practically Works
mini-inter.net

Thomas Holterbach
ETH Zurich

thomahol@ethz.ch

Tobias Bühler
ETH Zurich

buehlert@ethz.ch

Tino Rellstab
ETH Zurich

tinor@student.ethz.ch

Laurent Vanbever
ETH Zurich

lvanbever@ethz.ch

ABSTRACT
Each year at ETH Zurich, around 100 students collectively build
and operate their very own Internet infrastructure composed of
hundreds of routers and dozens of Autonomous Systems (ASes).
Their goal? Enabling Internet-wide connectivity.

We �nd this class-wide project to be invaluable in teaching our
students how the Internet infrastructure practically works. Among
others, our students have a much deeper understanding of Internet
operations alongside their pitfalls. Besides students tend to love the
project: clearly the fact that all of them need to cooperate for the
entire Internet to work is empowering.

In this paper, we describe the overall design of our teaching
platform, how we use it, and interesting lessons we have learnt
over the years. We also make our platform openly available [2].

CCS CONCEPTS
• Networks → Network design principles; Network proto-
cols; Public Internet;

1 INTRODUCTION
Most undergraduate networking courses, including ours [25], aim
at teaching “how the Internet works”. For the instructor, this typi-
cally means painstakingly going through the TCP/IP protocol stack,
one layer at a time, following a bottom-up [19] or top-down ap-
proach [13]. At the end of the lecture, students (hopefully) have
learnt concepts such as switching, routing, and reliable transport;
together with the corresponding protocols.

Learning these concepts is not su�cient to understand how
the Internet infrastructure works or, alternatively, why it does not
work. For this, we think one also needs to understand the ins and
outs of how the Internet is operated which includes topics such as
network design, network con�guration, network monitoring, and. . .
network debugging. Understanding these topics is important as
Internet operations tend to have a huge impact. Among others, most
of the Internet downtimes are due to human-induced errors [18].

We argue that an e�ective way to teach students about Internet
operations—one that we have successfully used for the last four
years—is simply to let students operate their own mini-Internet.
Turning students into operators. Each year, for the last four
years, around 100 ETH students have built, con�gured, and mon-
itored an actual Internet infrastructure composed of hundreds of
routers split across 60 Autonomous Systems (ASes). Each group of
2–3 students is responsible for administering, from scratch, one AS
composed of multiple hosts, layer-2 switches and layer-3 routers.
Each network “peers” with others using BGP, either directly or
through Internet eXchange Points (IXPs), which we (the instruc-
tors) maintain. The students’ goal is identical to the ones of actual
operators: enabling Internet-wide connectivity, between any pair of

IP pre�xes, by transiting IP tra�c across multiple student networks.
As they quickly realize though, achieving this goal is challenging
and requires a truly collective e�ort. We found this to be empower-
ing. The fact that all networks need to work for the Internet as a
whole to work really helps to bring together the entire classroom.

Over the years, the mini-Internet project has become a �agship
piece of our networking lecture, one that the new students look
forward to. Thus far, the feedback we received from the students has
been extremely positive, with comments such as: "It really allows us
to apply the theoretical concepts"; "I am quite con�dent about many
things on the Internet now"; and "It is a unique project".

Besides gaining a much deeper understanding of the various In-
ternet mechanisms, having students build and maintain their own
Internet infrastructure enables them to quickly realize the pitfalls
and shortcomings behind Internet operations. Students quickly real-
ize: (i) how fragile the Internet infrastructure is and how dependent
they are on their neighbors’ connectivity; (ii) how hard it is to trou-
bleshoot Internet-wide problems; and (iii) how di�cult it is to co-
ordinate with each other to �x remote problems. Each year, several
groups of students come up with proposals (sometimes, even imple-
mentations!) to improve Internet operations. These proposals often
directly relate to research topics active in our community (such
as con�guration veri�cation/synthesis or active probing). Perhaps
candidly, we believe that encountering operational problems early
on in their networking curriculum can help the next-generation of
network designers avoid repeating the mistakes made in the past.
An open platform. Given the success of our project, we have open
sourced the entire platform [2] and hope that other institutions will
start using it. We built our platform with three key goals in mind.

First, we aimed at faithfully emulating the real Internet infras-
tructure. To do so, we rely on (open-source) switching and routing
software implementing the most well-known protocols (e.g., STP,
OSPF, BGP). We also rely on virtualization (containers) to inter-
connect many instances (100+) of these software. While relying on
virtualization in network education is not new (e.g., [3, 5, 6, 14, 22]),
our setting is unique as it is entirely designed to support and facili-
tate large and collectively-operated routing infrastructures.

Second, while we wanted the students to learn the intricacies of
Internet operations, we also wanted to avoid making it too daunting
for them. In particular, our students only have four weeks to build
the entire mini-Internet. To help them, we developed a suite of
troubleshooting tools such as a perfect “looking glass” which allows
them to see the routing information of any network, together with
a real-time visualization of the overall Internet connectivity.

Third, we wanted the setup to be easy to manage for us (the in-
structors), �exible (so that we can adapt it each year), cost-e�ective
and scalable (to 100+ students). We therefore automated the en-
tire provisioning: it takes only a few hours to create and launch a

Youtube video

For further information about the mini-Internet: mini-inter.net

Every year we improve the project

We still too often observe such incorrect paths

Every year we improve the project

We still too often observe such incorrect paths

Every year we improve the project

We are designing a visualisation framework

to help students detecting those incorrect paths

Every year we improve the project

Although you eliminated the

hijacker very well…

Every year we improve the project

Although you eliminated the

hijacker very well…

…It is always better to prevent a hijack

before it actually happens

Every year we improve the project

Although you eliminated the

hijacker very well…

…It is always better to prevent a hijack

before it actually happens

We plan to implement the RPKI infrastructure

into the mini-internet so that you can

validate the origin of the BGP routes

We offer this as a semester thesis,

check out our website for further information!

Please let us know if you have any feedback

or ideas on how to improve the project :-)

Wrap-up of the routing project

Intro to the reliable transport project

Intro to Python and Git

Communication Networks

Exercise 10

Current assignment

Implement your own Reliable Transport Protocol

recover from packet loss

and reordering

Implement your own Reliable Transport Protocol

Implement your own Reliable Transport Protocol

ReceiverSender

Lossy Link

Implement your own Reliable Transport Protocol

ReceiverSender

Input

Data

Lossy Link
✗

Implement your own Reliable Transport Protocol

ReceiverSender

Input Output

Data

Lossy Link
✗

Implement your own Reliable Transport Protocol

ReceiverSender

Input Output

Data

ACKs

Lossy Link
✗

✓ ✗

Implement your own Reliable Transport Protocol

ReceiverSender

Input Output

Data

ACKs

Lossy Link
✗

✓ ✗

The Go-Back-N Protocol

The Go-Back-N Protocol

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

Sender

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

Receiver

The Go-Back-N Protocol

Sender

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

Receiver

lossy link

The Go-Back-N Protocol

Sender 0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

data packets

Receiver

lossy link

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

sliding window

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

ready to send

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

unACK’ed

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0

ACK 0

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0

ACK’ed

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0

ACK’ed

1

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0

ACK’ed

1 2

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0

ACK’ed

1 2

unACK’ed

ready to send

waiting

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2

✗

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2

✗
ACK 3

3

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2

✗

3

cumulative ACKs

make up for losses

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2

✗

3

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2 3 4 5 6 7

✗✗✗✗

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2 3 4 5 6 7

✗✗✗✗

When a timeout occurs,

the sender retransmits

all segments in the window.

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2 3 4 5 6 7

✗✗✗✗

When a timeout occurs,

the sender retransmits

all segments in the window.

The Go-Back-N Protocol

Sender

Receiver

0 1 2 3 4 5 6 7 8 9

a simple reliable transport protocol with

a sliding window, cumulative ACKs, timeouts and retransmissions

0 1 2 3 4 5 6 7

Support for Selective Repeat

Fast retransmission after repeated ACKs

Support for Selective Acknowledgements (SACK)

SACK contains blocks of correctly received segments

Simple Go-Back-N implementation

Retransmit all packets after a timeout

Part 1

Part 2

Part 3

Reliable Transport Project Assignment

Congestion ControlBonus

Don’t worry, we provide you with a code skeleton

Ask your questions on Slack (#transport_project)

or during the exercise and Q&A sessions

As always:

Wrap-up of the routing project

Intro to the reliable transport project

Intro to Python and Git

Communication Networks

Exercise 10

Current assignment

ETH Zürich - Communication Networks - Noah Hütter

Python Development
And a bit of Git

• Python

• Integrated Development Environments (IDEs)

• Version Control with Git

Contents

Python

https://xkcd.com/353/

Windows

realpython.com/installing-python

Ubuntu

sudo apt-get install python3.7 python3-pip \  
python3.7-venv

Mac OSX

brew install python

Installation
Python

$ python3.7
>>> print("Hello World!”)
Hello World!

Getting started
Python

Familiarise yourself with Python before you start.

Beginners Guide 
learnpython.org

Advanced/Refresh Guide  
learnxinyminutes.com/docs/

python3

Python
From Text Editors to IDEs

Sublime Text atom.io vim

JetBrains PyCharm Visual Studio Code

Text Editors

Integrated Development Environments

Python
From Text Editors to IDEs

Sublime Text

• Free, no registration required

• Text Editor only

• All platforms

Python
From Text Editors to IDEs

JetBrains PyCharm

• Free, open source community edition

• More sophisticated features, such as a debugger

• All platforms

Create virtual environment (only done to setup)
$ python3.7 -m venv venv
Activate the environment
$ source venv/bin/activate
python executable is now used from environment
(venv) $ which python
/Users/noah/venv/bin/python
Install packages with pip
(venv) $ pip install numpy
Create list of packages
(venv) $ pip freeze > requirements.txt
Install all packages from requirements file
(venv) $ pip install -r requirements.txt
Deactivate environment
(venv) $ deactivate

Virtual Environments (Advanced topic)
Python

Helps to use correct Python version and packages.

https://realpython.com/python-virtual-environments-a-primer/

Virtual Environments (Advanced topic)
Python

Supported by PyCharm

Version Control
Git

https://xkcd.com/1597/

Without git

Every collaborator has its own version of the files, merging is
manual, going back in time is not possible.

With git

File changes are tracked, merging is assisted, history can be
accessed (and much more)

Tracks Changes in your Code
Git

1. Create a repository for your group

https://gitlab.ethz.ch/projects/new

You can set the visibility to private (only group members).

Setup
Git

2. Invite group members

Settings → Members

Set role to developer so they can push to non-protected branches,
the master branch is protected.

Setup
Git

3. Create SSH key and add it to Gitlab

https://docs.gitlab.com/ee/gitlab-basics/create-your-ssh-keys.html

$ ssh-keygen

This allows you to access the repository from the console.

Setup
Git

4. Upload the project files to Gitlab

Go to the repository (Projects → repository name) and follow the
instructions for Push an existing folder.

Setup
Git

5. Download the repository to your local machine

This way you can work on your machine without VM connection

$ git clone <link_to_repo>

Setup
Git

Workflow
Git

git pull
Get most recent version

<do work>

git add .
Select files to update

git commit
Store changes

git push
Upload changes to Gitlab

Start

Download latest changes from Gitlab
$ git pull
Do work on files...
$ vim main.py
Show what has changed
$ git status
Add the files you want to update
$ git add main.py
Store changes in history with a short description
$ git commit -m ”very important bug fix”
Upload the changes to Gitlab
$ git push

Workflow
Git

Workflow
Git

Tips and Tricks
Git

• No branching required for the assignment

• Run the git commands from the correct directory

• Always pull before you push

Cheat Sheet & Installation Guide

rogerdudler.github.io/git-guide

Wrap-up of the routing project

Intro to the reliable transport project

Intro to Python and Git

Communication Networks

Exercise 10

Current assignment

Task 1: Reliable Transport

sender receiver

time

0

…

Analyze a Go-Back-N transfer

on a 10Mbps link with a

100ms propagation delay

of 10 segments (10’000 bits)

with and without loss

Wrap-up of the routing project

Intro to the reliable transport project

Intro to Python and Git

Communication Networks

Exercise 10

Current assignment

