
Communication Networks

Prof. Laurent Vanbever

Online/COVID-19 Edition

Communication Networks (Online Edition) | Mon 11 May 2020 1 of 10

Communication Networks

Spring 2020

ETH Zürich (D-ITET)

Laurent Vanbever

May 11 2020

Materials inspired from Scott Shenker, Jennifer Rexford, and Ankit Singla

nsg.ee.ethz.ch

Last week on

Communication Networks

WebDNS

google.ch 172.217.16.131 http://www.google.ch

infrastructure hierarchy of DNS servers

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

The DNS infrastructure is

hierarchically organized

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

m.

VeriSign, Inc.

University of Southern California

Cogent Communications

University of Maryland

NASA

Internet Systems Consortium

US Department of Defense

US Army

Netnod

VeriSign, Inc.

RIPE NCC

ICANN

WIDE Project

13 root servers (managed professionally)

serve as root (*)

To scale root servers,

operators rely on BGP anycast

Routing finds shortest-pathsIntuition

This enables seamless replications of resources

If several locations announce the same prefix,

then routing will deliver the packets to

the “closest” location

Communication Networks | Mon 11 May 2020 2 of 10

root

ethz

www ee infk

epfl nzz

com org net edu gov mil be de frch

TLDs server are also managed professionally

by private or non-profit organization

The bottom (and bulk) of the hierarchy is

managed by Internet Service Provider or locally

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

A DNS server stores Resource Records

composed of a (name, value, type, TTL)

MX domain

CNAME alias

NS domain

A hostname

Records Name Value

IP address

DNS server name

Mail server name

canonical name

PTR IP address corresponding hostname

Using DNS relies on two components

resolver software local DNS server

usually, near the endhoststrigger resolution process

configured statically (resolv.conf)

dynamically (DHCP)or

send request to local DNS server

gethostbyname()

DNS resolution can either be

recursive or iterative

root	
DNS	server

.edu	servers

nyu.edu		servers

www.nyu.edu?

DNS	client	
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

When performing a recursive query,

the client offload the task of resolving to the server

root	
DNS	server

.edu	servers

nyu.edu		servers

Where is .edu?

Where is www.nyu.edu?

Where is nyu.edu?
DNS	server
local

DNS	client	
(me.ee.ethz.ch)

When performing a iterative query,

the server only returns the address of the "next server"

Communication Networks | Mon 11 May 2020 3 of 10

Web

http://www.google.ch

DNS

The WWW is made of

three key components

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

We’ll focus on

its implementation

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

A Uniform Resource Locator (URL)

refers to an Internet ressource

protocol://hostname[:port]/directory_path/resource ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

HTTP is a rather simple

synchronous request/reply protocol

HTTP is text-based (ASCII)

human readable, easy to reason about

HTTP is layered over a bidirectional byte stream

typically TCP, but QUIC is ramping up

HTTP is stateless

it maintains no info about past client requests

PerformanceProtocol

Communication Networks | Mon 11 May 2020 4 of 10

PerformanceProtocol

HTTP clients make request to the server

method URL version<sp> <cr><lf><sp>

…

body

HTTP

request header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

method GET return resource

HEAD return headers only

POST send data to server (forms)

URL relative to server (e.g., /index.html)

version 1.0, 1.1, 2.0

HTTP servers answers to clients’ requests

version status phrase<sp> <cr><lf><sp>

…

body

HTTP

response header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Status 1XX

2XX

3XX

4XX

5XX

3 digit response code reason phrase

informational

success

redirection

client error

server error

200 OK

301 Moved Permanently

303 Moved Temporarily

304 Not Modified

404 Not Found

505 Not Supported

HTTP makes the client maintain the state.

This is what the so-called cookies are for!

client stores small state

on behalf of the server X

client sends state

in all future requests to X

can provide authentication

This week on

Communication Networks

Web

http://www.google.ch

Video Streaming

HTTP-based

(the end, from slide 70/97)

Communication Networks | Mon 11 May 2020 5 of 10

Web

http://www.google.ch

Video Streaming

(the end, from slide 70/97)

Web Video Streaming

HTTP-based

(c) copyright 2008, Blender Foundation / www.bigbuckbunny.org, CC-BY-3.0

We want the highest video quality

1

Without seeing this …

2

3

Why should you care? Just look at this:
video's share of global internet traffic

A naive approach: one-size-fits-all

4

[bitmovin.com]

In practice, things are complex

5

End-to-End Workflow for OTT

Production Preparation and Staging Distribution Consumption

News

Gathering

Sport Events

Premium

Content

Studio

Multi-bitrate

Encoding

Encapsulation

Protection

Origin Servers

VoD

Content &

Manifests

Live

Content &

Manifests

CDN

ACM SIGCOMM Tutorial - Aug. 2017 21[Adapted from: Adaptive Streaming of Traditional and Omnidirectional Media,
Begen & Timmerer, ACM SIGCOMM Tutorial, 2017]

The three steps behind most contemporary
solutions

• Encode video in multiple bitrates

• Replicate using a content delivery network

• Video player picks bitrate adaptively

• Estimate connection’s available bandwidth
• Pick a bitrate ≤ available bandwidth

6

Communication Networks | Mon 11 May 2020 6 of 10

7

ReplicationEncoding Adaptation

8

ReplicationEncoding Adaptation

9[bitmovin.com] 10[bitmovin.com]

11[bitmovin.com] 12

Simple solution for encoding:
use a “bitrate ladders”

[netflix.com]

13

Problem: this doesn't take into account the variability
in the video content (slow moving vs. fast moving)

[bitmovin.com][netflix.com]

[netflix.com]

14[bitmovin.com]

Encoding

Communication Networks | Mon 11 May 2020 7 of 10

15

Encoding

[netflix.com]Bitrate (Kbps)

Video quality
(PSNR in dB)

Your player download “chunks” of video
at different bitrates

16

…

…

Time

1s 2s
[netflix.com]

Depending on your network connectivity,
your player fetches chunks of different qualities

17

…

…

Time

1s 2s
[netflix.com]

Your player gets metadata about chunks via
“Manifest”

18
[witestlab.poly.edu]

19

ReplicationEncoding Adaptation

20To ~4Tbits of edge capacity in 4 racks...

 Now and...

Storage Appliance
■  Still 4U high
■  ~550 watts
■  288 TB of storage
■  2x 10G ports
■  20Gbit/s delivery

Flash Appliance
■  1U
■  ~175 watts
■  24 TB of flash
■  2x 40G ports
■  40Gbit/s delivery

Storage Appliance
■  Still 4U high
■  ~550 watts
■  288 TB of storage
■  2x 10G ports
■  20Gbit/s delivery

Flash Appliance
■  1U
■  ~175 watts
■  24 TB of flash
■  2x 40G ports
■  40Gbit/s delivery

Dave Temkin
06/01/2015

Open Connect:

Starting from a Greenfield
(a mostly Layer 0 talk)

Dave Temkin
06/01/2015

Open Connect:

Starting from a Greenfield
(a mostly Layer 0 talk)

21

[more-ip-event.net]

22

 [openconnect.netflix.com]

Communication Networks | Mon 11 May 2020 8 of 10

23[netflix.com] 24[netflix.com]

25 26

https://ipv4-c001-zrh001-swisscom-isp.1.oca.nflxvideo.net

27

Complete Playback Workflow
@Netflix

[more-ip-event.net]

28

How many OCA appliances in Swisscom?
I found at least 35 of them

ipv4-c001-zrh001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c002-zrh001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c003-zrh001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c004-zrh001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c005-zrh001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c006-zrh001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c007-zrh001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c008-zrh001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c001-zrh002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c002-zrh002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c003-zrh002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c004-zrh002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c005-zrh002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c006-zrh002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c007-zrh002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c008-zrh002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c001-zrh003-swisscom-isp.1.oca.nflxvideo.net
ipv4-c002-zrh003-swisscom-isp.1.oca.nflxvideo.net

193.247.193.34
193.247.193.35
193.247.193.36
193.247.193.37
193.247.193.38
193.247.193.39
193.247.193.40
193.247.193.41
193.247.193.98
193.247.193.99
193.247.193.100
193.247.193.101
193.247.193.102
193.247.193.103
193.247.193.104
193.247.193.105
193.247.193.242
193.247.193.243

ipv4-c001-gva001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c002-gva001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c003-gva001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c004-gva001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c005-gva001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c006-gva001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c007-gva001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c009-gva001-swisscom-isp.1.oca.nflxvideo.net
ipv4-c001-gva002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c002-gva002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c003-gva002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c005-gva002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c006-gva002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c007-gva002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c008-gva002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c009-gva002-swisscom-isp.1.oca.nflxvideo.net
ipv4-c010-gva002-swisscom-isp.1.oca.nflxvideo.net

193.247.193.2
193.247.193.3
193.247.193.4
193.247.193.5
193.247.193.6
193.247.193.7
193.247.193.8
193.247.193.9
193.247.193.72
193.247.193.73
193.247.193.74
193.247.193.67
193.247.193.68
193.247.193.69
193.247.193.70
193.247.193.71
193.247.193.66

Assuming all of them are fully loaded → 10 080 TB of storage!! (288 TB x 35)
>2 million 1080p movies, assuming 100 min encoded at 5 Mbps

29

Besides OCAs within ISPs, Netflix also hosts
caches at various IXPs and datacenters

ipv4-c001-zrh001-ix.1.oca.nflxvideo.net
ipv4-c002-zrh001-ix.1.oca.nflxvideo.net
ipv4-c003-zrh001-ix.1.oca.nflxvideo.net
ipv4-c004-zrh001-ix.1.oca.nflxvideo.net
ipv4-c005-zrh001-ix.1.oca.nflxvideo.net
ipv4-c006-zrh001-ix.1.oca.nflxvideo.net
ipv4-c007-zrh001-ix.1.oca.nflxvideo.net
ipv4-c008-zrh001-ix.1.oca.nflxvideo.net
ipv4-c009-zrh001-ix.1.oca.nflxvideo.net
ipv4-c010-zrh001-ix.1.oca.nflxvideo.net
ipv4-c011-zrh001-ix.1.oca.nflxvideo.net
ipv4-c012-zrh001-ix.1.oca.nflxvideo.net

45.57.18.130
45.57.18.131
45.57.18.132
45.57.19.130
45.57.19.131
45.57.19.132
45.57.18.133
45.57.18.134
45.57.18.135
45.57.18.136
45.57.19.133
45.57.19.134

ipv4-c013-zrh001-ix.1.oca.nflxvideo.net
ipv4-c014-zrh001-ix.1.oca.nflxvideo.net
ipv4-c015-zrh001-ix.1.oca.nflxvideo.net
ipv4-c016-zrh001-ix.1.oca.nflxvideo.net
ipv4-c017-zrh001-ix.1.oca.nflxvideo.net
ipv4-c018-zrh001-ix.1.oca.nflxvideo.net
ipv4-c019-zrh001-ix.1.oca.nflxvideo.net
ipv4-c020-zrh001-ix.1.oca.nflxvideo.net
ipv4-c021-zrh001-ix.1.oca.nflxvideo.net
ipv4-c022-zrh001-ix.1.oca.nflxvideo.net
ipv4-c023-zrh001-ix.1.oca.nflxvideo.net
ipv4-c024-zrh001-ix.1.oca.nflxvideo.net

45.57.19.135
45.57.19.136
45.57.18.137
45.57.18.138
45.57.19.137
45.57.19.138
45.57.18.139
45.57.18.140
45.57.18.141
45.57.19.139
45.57.19.140
45.57.19.141

At least 24 instances in Zurich Equinix, see https://openconnect.netflix.com/en/peering/#locations

30

If you are interested in finding out more:
check out https://openconnect.netflix.com

Deployment guide: https://openconnect.netflix.com/deploymentguide.pdf

Communication Networks | Mon 11 May 2020 9 of 10

31

ReplicationEncoding Adaptation
Network

Capacity (Mbps)

Time

Network

1s

Capacity (Mbps)

Time

1s chunks at
different bit-rates

Playing out

Downloading

Network

Capacity < current rate ⇒ decrease rate

Common solution approach

• Encode video in multiple bitrates

• Replicate using a content delivery network

• Video player picks bitrate adaptively

• Estimate connection’s available bandwidth
• Pick a bitrate ≤ available bandwidth

35

Estimating available capacity

A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell⇤, Mark Watson⇤

Stanford University, Netflix⇤

{huangty,rjohari,nickm}@stanford.edu, {mtrunnell,watsonm}@netflix.com

ABSTRACT
Existing ABR algorithms face a significant challenge in esti-
mating future capacity: capacity can vary widely over time,
a phenomenon commonly observed in commercial services.
In this work, we suggest an alternative approach: rather
than presuming that capacity estimation is required, it is
perhaps better to begin by using only the bu↵er, and then
ask when capacity estimation is needed. We test the viabil-
ity of this approach through a series of experiments spanning
millions of real users in a commercial service. We start with
a simple design which directly chooses the video rate based
on the current bu↵er occupancy. Our own investigation re-
veals that capacity estimation is unnecessary in steady state;
however using simple capacity estimation (based on immedi-
ate past throughput) is important during the startup phase,
when the bu↵er itself is growing from empty. This approach
allows us to reduce the rebu↵er rate by 10–20% compared
to Netflix’s then-default ABR algorithm, while delivering a
similar average video rate, and a higher video rate in steady
state.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General

Keywords
HTTP-based Video Streaming, Video Rate Adaptation Al-
gorithm

1. INTRODUCTION
During the evening peak hours (8pm–1am EDT), well over

50% of US Internet tra�c is video streamed from Netflix and
YouTube [16, 17]. Unlike traditional video downloads that
must complete fully before playback can begin, streaming
video starts playing within seconds. Each video is encoded
at a number of di↵erent rates (typically 235kb/s standard
definition to 5Mb/s high definition) and stored on servers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626296.

Figure 1: Video streaming clients experience highly
variable end-to-end throughput.

as separate files. The video client—running on a home
TV, game console, web browser, DVD player, etc.—chooses
which video rate to stream by monitoring network condi-
tions and estimating the available network capacity. This
process is referred to as adaptive bit rate selection or ABR.

ABR algorithms used by such services balance two over-
arching goals. On one hand, they try to maximize the video
quality by picking the highest video rate the network can
support. On the other hand, they try to minimize rebu↵er-
ing events which cause the video to halt if the client’s play-
back bu↵er goes empty.

It is easy for a streaming service to meet either one of the
objectives on its own. To maximize video quality, a service
could just stream at the maximum video rate Rmax all the
time. Of course, this would risk extensive rebu↵ering. On
the other hand, to minimize rebu↵ering, the service could
just stream at the minimum video rate Rmin all the time—
but this extreme would lead to low video quality. The design
goal of an ABR algorithm is to simultaneously obtain high
performance on both metrics in order to give users a good
viewing experience [7].

One approach is to pick a video rate by estimating fu-
ture capacity from past observations. In an environment
with constant throughput, past observations are reliable to
predict future capacity. However, in an environment with
highly variable throughput, although past observations still
provide valuable ballpark figures, accurate estimation of fu-
ture capacity becomes challenging. Figure 1 is a sample
trace reported by a Netflix video player, showing how the

ACM SIGCOMM

A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell⇤, Mark Watson⇤

Stanford University, Netflix⇤

{huangty,rjohari,nickm}@stanford.edu, {mtrunnell,watsonm}@netflix.com

ABSTRACT
Existing ABR algorithms face a significant challenge in esti-
mating future capacity: capacity can vary widely over time,
a phenomenon commonly observed in commercial services.
In this work, we suggest an alternative approach: rather
than presuming that capacity estimation is required, it is
perhaps better to begin by using only the bu↵er, and then
ask when capacity estimation is needed. We test the viabil-
ity of this approach through a series of experiments spanning
millions of real users in a commercial service. We start with
a simple design which directly chooses the video rate based
on the current bu↵er occupancy. Our own investigation re-
veals that capacity estimation is unnecessary in steady state;
however using simple capacity estimation (based on immedi-
ate past throughput) is important during the startup phase,
when the bu↵er itself is growing from empty. This approach
allows us to reduce the rebu↵er rate by 10–20% compared
to Netflix’s then-default ABR algorithm, while delivering a
similar average video rate, and a higher video rate in steady
state.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General

Keywords
HTTP-based Video Streaming, Video Rate Adaptation Al-
gorithm

1. INTRODUCTION
During the evening peak hours (8pm–1am EDT), well over

50% of US Internet tra�c is video streamed from Netflix and
YouTube [16, 17]. Unlike traditional video downloads that
must complete fully before playback can begin, streaming
video starts playing within seconds. Each video is encoded
at a number of di↵erent rates (typically 235kb/s standard
definition to 5Mb/s high definition) and stored on servers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626296.

0 500 1000 1500 2000 2500
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Av
er

ag
e

Th
ro

ug
hp

ut
 o

ve
r a

 C
hu

nk
 D

ow
nl

oa
d

 (k
b/

s)

Figure 1: Video streaming clients experience highly
variable end-to-end throughput.

as separate files. The video client—running on a home
TV, game console, web browser, DVD player, etc.—chooses
which video rate to stream by monitoring network condi-
tions and estimating the available network capacity. This
process is referred to as adaptive bit rate selection or ABR.

ABR algorithms used by such services balance two over-
arching goals. On one hand, they try to maximize the video
quality by picking the highest video rate the network can
support. On the other hand, they try to minimize rebu↵er-
ing events which cause the video to halt if the client’s play-
back bu↵er goes empty.

It is easy for a streaming service to meet either one of the
objectives on its own. To maximize video quality, a service
could just stream at the maximum video rate Rmax all the
time. Of course, this would risk extensive rebu↵ering. On
the other hand, to minimize rebu↵ering, the service could
just stream at the minimum video rate Rmin all the time—
but this extreme would lead to low video quality. The design
goal of an ABR algorithm is to simultaneously obtain high
performance on both metrics in order to give users a good
viewing experience [7].

One approach is to pick a video rate by estimating fu-
ture capacity from past observations. In an environment
with constant throughput, past observations are reliable to
predict future capacity. However, in an environment with
highly variable throughput, although past observations still
provide valuable ballpark figures, accurate estimation of fu-
ture capacity becomes challenging. Figure 1 is a sample
trace reported by a Netflix video player, showing how the

Avg. throughput over
chunk download (kbps)

Time(s)

“A random sample of 300,000
Netflix sessions shows that roughly
10% of sessions experience a
median throughput less than half of
the 95th percentile throughput.”

“20–30% of rebuffers are
unnecessary”

Estimating available capacity

37

A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell⇤, Mark Watson⇤

Stanford University, Netflix⇤

{huangty,rjohari,nickm}@stanford.edu, {mtrunnell,watsonm}@netflix.com

ABSTRACT
Existing ABR algorithms face a significant challenge in esti-
mating future capacity: capacity can vary widely over time,
a phenomenon commonly observed in commercial services.
In this work, we suggest an alternative approach: rather
than presuming that capacity estimation is required, it is
perhaps better to begin by using only the bu↵er, and then
ask when capacity estimation is needed. We test the viabil-
ity of this approach through a series of experiments spanning
millions of real users in a commercial service. We start with
a simple design which directly chooses the video rate based
on the current bu↵er occupancy. Our own investigation re-
veals that capacity estimation is unnecessary in steady state;
however using simple capacity estimation (based on immedi-
ate past throughput) is important during the startup phase,
when the bu↵er itself is growing from empty. This approach
allows us to reduce the rebu↵er rate by 10–20% compared
to Netflix’s then-default ABR algorithm, while delivering a
similar average video rate, and a higher video rate in steady
state.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General

Keywords
HTTP-based Video Streaming, Video Rate Adaptation Al-
gorithm

1. INTRODUCTION
During the evening peak hours (8pm–1am EDT), well over

50% of US Internet tra�c is video streamed from Netflix and
YouTube [16, 17]. Unlike traditional video downloads that
must complete fully before playback can begin, streaming
video starts playing within seconds. Each video is encoded
at a number of di↵erent rates (typically 235kb/s standard
definition to 5Mb/s high definition) and stored on servers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626296.

0 500 1000 1500 2000 2500
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Av
er

ag
e

Th
ro

ug
hp

ut
 o

ve
r a

 C
hu

nk
 D

ow
nl

oa
d

 (k
b/

s)

Figure 1: Video streaming clients experience highly
variable end-to-end throughput.

as separate files. The video client—running on a home
TV, game console, web browser, DVD player, etc.—chooses
which video rate to stream by monitoring network condi-
tions and estimating the available network capacity. This
process is referred to as adaptive bit rate selection or ABR.

ABR algorithms used by such services balance two over-
arching goals. On one hand, they try to maximize the video
quality by picking the highest video rate the network can
support. On the other hand, they try to minimize rebu↵er-
ing events which cause the video to halt if the client’s play-
back bu↵er goes empty.

It is easy for a streaming service to meet either one of the
objectives on its own. To maximize video quality, a service
could just stream at the maximum video rate Rmax all the
time. Of course, this would risk extensive rebu↵ering. On
the other hand, to minimize rebu↵ering, the service could
just stream at the minimum video rate Rmin all the time—
but this extreme would lead to low video quality. The design
goal of an ABR algorithm is to simultaneously obtain high
performance on both metrics in order to give users a good
viewing experience [7].

One approach is to pick a video rate by estimating fu-
ture capacity from past observations. In an environment
with constant throughput, past observations are reliable to
predict future capacity. However, in an environment with
highly variable throughput, although past observations still
provide valuable ballpark figures, accurate estimation of fu-
ture capacity becomes challenging. Figure 1 is a sample
trace reported by a Netflix video player, showing how the

Avg. throughput over
chunk download (kbps)

Time(s)

[A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service,
Huang et al., ACM SIGCOMM 2014]

Capacity estimation

38

Capacity (Mbps)

Time

Decide based on the buffer alone?

Network

Communication Networks | Mon 11 May 2020 10 of 10

Buffer-based adaptation

39

Nearly full buffer ⇒ large rate

Network

Buffer-based adaptation

40

Nearly empty buffer ⇒ small rate

Network

Buffer-based adaptation

41

Risky''
Area'

Playout&Buffer&Occupancy&

N
ex
t&C

hu
nk
’s
&V
id
eo

&R
at
e&

Rmin&

Rmax&

…
&

0%&

Bmax&

Safe'from''
Unnecessary''
rebuffering'

Buffer occupancy

Next chunk’s rate

Low
buffer:

High
buffer:

[A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service,
Huang et al., ACM SIGCOMM 2014]

Problem: startup phase?

Pick a rate based on immediate past throughput

Communication Networks

Spring 2020

ETH Zürich (D-ITET)

Laurent Vanbever

May 11 2020

nsg.ee.ethz.ch

