
Communication Networks

Prof. Laurent Vanbever

Online/COVID-19 Edition

Communication Networks (Online Edition) | Mon 4 May 2020 1 of 13

Communication Networks

Spring 2020

ETH Zürich (D-ITET)

Laurent Vanbever

May 4 2020

Materials inspired from Scott Shenker, Jennifer Rexford, and Ankit Singla

nsg.ee.ethz.ch

Last week on

Communication Networks

DNS
Congestion 

Control

google.ch 172.217.16.131
(the beginning)

DNS
Congestion 

Control

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

Congestion control differs from flow control

both are provided by TCP though

Flow control

Congestion control

prevents one fast sender from

prevents a set of senders from

overloading the network

overloading a slow receiver

Congestion Window

CWND

How many bytes can be sent

without overflowing the routers?

Receiving Window

RWND

How many bytes can be sent

without overflowing the receiver buffer?

based on network conditions

based on the receiver input

Sender Window minimum(CWND, RWND)

The sender adapts its sending rate

based on these two windows

Communication Networks | Mon 4 May 2020 2 of 13

The 2 key mechanisms of Congestion Control

detecting

congestion

reacting to

congestion

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it
detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

it depends on the problem we are solving…

TCP approach is to gently increase when not congested

and to rapidly decrease when congested

What increase/decrease function

should we use?

question

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

#1

Initially, you want to quickly get a first-order estimate

of the available bandwidth

Increase cwnd = 1

cwnd += 1

initially

policy

Intuition Start slow but rapidly increase

until a packet drop occurs

upon receipt of an ACK

Communication Networks | Mon 4 May 2020 3 of 13

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

#2

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#3

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

Time

cwnd

Timeout

Slow
Start

AIMD

Timeout

Slow
Start

Slow
Start

AIMD

AIMD

3 dups ACKs

Congestion control makes TCP throughput

look like a “sawtooth”

DNS
Congestion 

Control

google.ch 172.217.16.131
(the beginning)

129.132.19.216

IP addressname

www.ethz.ch

DNS

The DNS system is a distributed database

which enables to resolve a name into an IP address

To scale,

DNS adopt three intertwined hierarchies

naming structure

management

infrastructure

addresses are hierarchical

www.ee.ethz.ch

hierarchy of authority

over names

hierarchy of DNS servers

Communication Networks | Mon 4 May 2020 4 of 13

naming structure addresses are hierarchical

www.ee.ethz.ch

root

com org net edu gov mil chbe de fr

“.”

ethz

www ee infk + many more

epfl nzz

A name, e.g. ee.ethz.ch, represents

a leaf-to-root path in the hierarchy

management hierarchy of authority

over names

root

com org net edu gov mil chbe de fr

ethz

www ee infk

epfl nzz

The DNS system is

hierarchically administered

infrastructure hierarchy of DNS servers

com org net edu gov mil be de fr

(*) see http://www.root-servers.org/

ch

ethz

www ee infk

epfl nzz

root

13 root servers (managed professionally)

serve as root (*)

The bottom (and bulk) of the hierarchy is

managed by Internet Service Provider or locally

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

Every server knows the address of the root servers (*)

required for bootstrapping the systems

(*) see https://www.internic.net/domain/named.root

Communication Networks | Mon 4 May 2020 5 of 13

Each server knows the address of all children

This week on

Communication Networks

Web

http://www.google.ch

DNS

google.ch 172.217.16.131
(the end)

WebDNS

google.ch 172.217.16.131
starting from slide 47/90

Web

http://www.google.ch

DNS

The Web as we know it was founded in ~1990,

by Tim Berners-Lee, physicist at CERN

provide distributed access to data

Tim Berners-Lee Photo: CERN

The World Wide Web (WWW):

a distributed database of “pages”

linked together via the

Hypertext Transport Protocol (HTTP)

His goal:

The Web was and still is so successful as

it enables everyone to self-publish content

People weren’t looking for technical perfection

little interest in collaborative or idealistic endeavor

Self-publishing on the Web is easy, independent & free

and accessible, to everyone

People essentially want to make their mark

and find something neat…

The WWW is made of

three key components

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

Communication Networks | Mon 4 May 2020 6 of 13

We’ll focus on

its implementation

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

A Uniform Resource Locator (URL)

refers to an Internet ressource

protocol://hostname[:port]/directory_path/resource protocol://hostname[:port]/directory_path/resource

HTTP(S)

FTP

SMTP…

protocol://hostname[:port]/directory_path/resource

DNS Name

IP address

protocol://hostname[:port]/directory_path/resource

default to protocol’s standard

HTTP:80, HTTPs:443

protocol://hostname[:port]/directory_path/resource

identify the resource

on the destination

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

Communication Networks | Mon 4 May 2020 7 of 13

HTTP is a rather simple

synchronous request/reply protocol

HTTP is text-based (ASCII)

human readable, easy to reason about

HTTP is layered over a bidirectional byte stream

typically TCP, but QUIC is ramping up

HTTP is stateless

it maintains no info about past client requests

PerformanceProtocol

PerformanceProtocol

HTTP clients make request to the server

method URL version<sp> <cr><lf><sp>

…

body

HTTP

request header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

method URL version<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

method GET return resource

HEAD return headers only

POST send data to server (forms)

URL relative to server (e.g., /index.html)

version 1.0, 1.1, 2.0

HTTP clients make request to the server

method URL version<sp> <cr><lf><sp>

…

body

HTTP

request header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Request headers are of variable lengths,

but still, human readable

Uses Authorization info

Acceptable document types/encoding

From (user email)

If-Modified-Since

Referrer (cause of the request)

User Agent (client software)

Host (identify the server to which the request is sent)

Communication Networks | Mon 4 May 2020 8 of 13

Uses Authorization info

Acceptable document types/encoding

From (user email)

If-Modified-Since

Referrer (cause of the request)

User Agent (client software)

Host (identify the server to which the request is sent)

129.132.19.216

IP addressname

www.ethz.ch

DNS

vanbever.eu

route-aggregation.net

82.130.102.71

82.130.102.71

Recall that multiple DNS names can map to

the same IP address

comm-net.ethz.ch 82.130.102.71

The "Host" header indicates the server (82.130.102.71)

the desired domain name (this is known as virtual hosting)

129.132.19.216

IP addressname

www.ethz.ch

DNS

vanbever.eu

route-aggregation.net

82.130.102.71

82.130.102.71

comm-net.ethz.ch 82.130.102.71

Virtual hosting enables one IP address

to host multiple websites

GET / HTTP/1.1
Host: comm-net.ethz.ch

request

answer HTTP/1.1 200 OK
Date: Fri, 01 May 2020 08:36:56 GMT
Server: Apache/2.4.18 (Ubuntu)

<head>
…
 <title>Communication Networks 2020</title>
….

connect openssl s_client -crlf -quiet -connect comm-net.ethz.ch:443

82.130.102.71

(resolved through DNS)

GET / HTTP/1.1
Host: vanbever.eu

request

answer HTTP/1.1 200 OK
Date: Fri, 01 May 2020 08:44:26 GMT
Server: Apache/2.4.18 (Ubuntu)

<head>
…
 <title>Laurent Vanbever</title>
….

connect openssl s_client -crlf -quiet -connect comm-net.ethz.ch:443

82.130.102.71

(resolved through DNS)

HTTP servers answers to clients’ requests

version status phrase<sp> <cr><lf><sp>

…

body

HTTP

response header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

version status phrase<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Communication Networks | Mon 4 May 2020 9 of 13

Status 1XX

2XX

3XX

4XX

5XX

3 digit response code reason phrase

informational

success

redirection

client error

server error

200 OK

301 Moved Permanently

303 Moved Temporarily

304 Not Modified

404 Not Found

505 Not Supported

version status phrase<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Like request headers, response headers are of

variable lengths and human-readable

Uses Location (for redirection)

Allow (list of methods supported)

Content encoding (e.g., gzip)

Content-Length

Content-Type

Expires (caching)

Last-Modified (caching)

HTTP is a stateless protocol,

meaning each request is treated independently

advantages disadvantages

server-side scalability

failure handling is trivial

some applications need state!

(shopping cart, user profiles, tracking)

How can you maintain state in a stateless protocol?

HTTP makes the client maintain the state.

This is what the so-called cookies are for!

client stores small state

on behalf of the server X

client sends state

in all future requests to X

can provide authentication

telnet google.ch 80

GET / HTTP/1.1
Host: www.google.ch

request

answer HTTP/1.1 200 OK
Date: Sun, 01 May 2016 14:10:30 GMT
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Server: gws

Set-Cookie:
NID=79=g6lgURTq_BG4hSTFhEy1gTVFmSncQVsy
TJI260B3xyiXqy2wxD2YeHq1bBlwFyLoJhSc7jmcA
6TlFIBY7-
dW5lhjiRiQmY1JxT8hGCOtnLjfCL0mYcBBkpk8X4
NwAO28; expires=Mon, 31-Oct-2016 14:10:30
GMT; path=/; domain=.google.ch; HttpOnly

browser
will relay
this value
in following
requests

PerformanceProtocol

Performance goals vary depending

on who you ask

User Content providerNetwork

operators

fast downloads

high availability

happy users

cost-effective

infrastructure

no overloadwish

Improve HTTP to

compensate for

TCP weakspots

Caching and Replication
solution

Communication Networks | Mon 4 May 2020 10 of 13

Improve HTTP to

compensate for

TCP weakspots

solution

User

fast downloads

high availability

wish

Client Server
SYN

SYN/ACK

ACK + HTTP GET

...

Establish
connection

Request
response

Client
request

Close connection

Relying on TCP forces a HTTP client to

open a connection before exchanging anything

TCP establishment

HTTP request/response

Most Web pages have multiple objects,

naive HTTP opens one TCP connection for each…

Fetching n objects requires ~2n RTTs

R1
R2 R3

T1

T2 T3

One solution to that problem is to use

multiple TCP connections in parallel

User

Network operator

Content provider

Happy!

Happy!

Not Happy!

Why?

Another solution is to use persistent connections

across multiple requests (the default in HTTP/1.1)

Allow TCP to learn more accurate RTT estimate

and with it, more precise timeout value

Avoid overhead of connection set-up and teardown

clients or servers can tear down the connection

Allow TCP congestion window to increase

and therefore to leverage higher bandwidth

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

Yet another solution is to pipeline requests & replies

asynchronously, on one connection

batch requests and responses to

reduce the number of packets

multiple requests can be packed

into one TCP segment

Considering the time to retrieve n small objects,

pipelining wins

one-at-a-time

M concurrent

persistent

pipelined

RTTS

~2n

~2n/M

~n+1

2

Considering the time to retrieve n big objects,

there is no clear winner as bandwidth matters more

RTTS

~n * avg. file size

bandwidth

Communication Networks | Mon 4 May 2020 11 of 13

(*) see https://mobiforge.com/research-analysis/the-web-is-doom

The average webpage size nowadays is 2.3 MB

as much as the original DOOM game…

(*) see https://mobiforge.com/research-analysis/the-web-is-doom

Top web sites have decreased in size though

because they care about TCP performance

User Content providerNetwork

operators

happy users

cost-effective

infrastructure

no overloadwish

Caching and Replicationsolution

Caching leverages the fact that

highly popular content largely overlaps

Just think of how many times

you request the Face logo

per day

how often it actually changes

vs

Caching it save time for your browser

and decrease network and server load

Yet, a significant portion of

the HTTP objects are “uncachable"

dynamic data

scripts

cookies

SSL

advertising

Examples stock prices, scores, ...

results based on parameters

results may be based on passed data

cannot cache encrypted data

wants to measure # of hits ($$$)

To limit staleness of cached objects,

HTTP enables a client to validate cached objects

Client conditionally requests a ressources

using the “if-modified-since” header in the HTTP request

Server compares this against “last modified” time

of the resource and returns:

Not Modified if the resource has not changed

OK with the latest version

Server hints when an object expires (kind of TTL)

as well as the last modified date of an object

Caching can and is performed at different locations

client

close to the client

close to the destination

forward proxy

Content Distribution Network (CDN)

reverse proxy

browser cache

Many clients request the same information

clients

request

Communication Networks | Mon 4 May 2020 12 of 13

This increases servers and network’s load,

while clients experience unnecessary delays

clients

request

Reverse proxies cache documents close to servers,

decreasing their load

clients

request

reverse

proxy

This is typically done by

content provider

Forward proxies cache documents close to clients,

decreasing network traffic, server load and latencies

forward

proxies
This is typically done by

ISPs or enterprises

Content providerNetwork

operators

happy users

cost-effective

infrastructure

no overloadwish

Caching and Replication
solution

The idea behind replication is to duplicate

popular content all around the globe

Places content closer to clients

only way to beat the “speed-of-light”

Spreads load on server

e.g., across multiple data-centers

Helps speeding up uncachable content

still have to pull it, but from closer

The problem of CDNs is to direct and serve

your requests from a close, non-overloaded replica

BGP Anycast

advertise the same IP prefix
from different locations

avoided in practice,
any idea why?

DNS-based

returns ≠ IP addresses

based on

client geo-localization

server load

http://wwwnui.akamai.com/gnet/globe/index.html

Akamai is one of the largest CDNs in the world,

boasting servers in more than 20,000 locations

Akamai uses a combination of

pull caching

push replication

direct result of clients requests

when expecting high access rate

together with some dynamic processing

dynamic Web pages, transcoding,…

Communication Networks | Mon 4 May 2020 13 of 13

“Akamaizing” content is easily done by modifying

content to reference the Akamai’s domains

Akamai creates domain names for each client

a128.g.akamai.net for cnn.com

Client modifies its URL to refer to Akamai’s domain

http://www.cnn.com/image-of-the-day.gif

becomes

http://a128.g.akamai.net/image-of-the-day.gif

Requests are now sent to the CDN infrastructure

Communication Networks

Spring 2020

ETH Zürich (D-ITET)

Laurent Vanbever

May 4 2020

nsg.ee.ethz.ch

