
Communication Networks

Prof. Laurent Vanbever

Online/COVID-19 Edition

Communication Networks (Online Edition) | Mon 6 Apr 2020 1 of 18

Communication Networks

Spring 2020

ETH Zürich (D-ITET)

Laurent Vanbever

April 6 2020

Materials inspired from Scott Shenker, Jennifer Rexford, and Sharon Goldberg

nsg.ee.ethz.ch

Last week on

Communication Networks

Follow the Money

BGP Policies1

Protocol

How does it work?

2

Problems

security, performance, …

3

Border Gateway Protocol

policies and more

Follow the Money

BGP Policies1

Protocol

How does it work?

Problems

security, performance, …

Border Gateway Protocol

policies and more

The Internet topology is shaped

according to business relationships

AS10

AS20 AS30

AS40

AS50

There are 2 main business relationships today:

customer/provider

peer/peer

many less important ones (siblings, backups,…)

There are 2 main business relationships today:

customer/provider

peer/peer

Communication Networks | Mon 6 Apr 2020 2 of 18

Customers pay providers

to get Internet connectivity

provider

customer

$$$

Peers don’t pay each other for connectivity,

they do it out of common interest

peer peer

DT and ATT exchange tons of traffic.

they save money by directly connecting to each other

Business relationships conditions

route selection

For a destination p, prefer routes coming from

customers over

peers over

providers

route type

from

send to

peer

provider

customer peer provider

customer

Business relationships conditions

route exportation

Routes coming from customers

are propagated to everyone else

from

send to

peer

provider

customer peer provider

customer ✓ ✓ ✓

Routes coming from peers and providers

are only propagated to customers

from

send to

peer

provider

customer peer provider

customer ✓ ✓ ✓

✓

✓

- -

- -

Follow the Money

BGP Policies

Protocol

How does it work?

2

Problems

security, performance, …

Border Gateway Protocol

policies and more

AS10

AS20

AS30

AS40
AS50

BGP sessions come in two flavors

Communication Networks | Mon 6 Apr 2020 3 of 18

external BGP (eBGP) sessions

connect border routers in different ASes

eBGP

session

iBGP sessions are used to disseminate

externally-learned routes internally

 129.132.0.0/16

 Path: 20

 129.132.0.0/16

 Path: 20

 129.132.0.0/16

 Path: 20 129.132.0.0/16

 Path: 20

 129.132.0.0/16

 Path: 20

BGP UPDATEs carry an IP prefix
together with a set of attributes

IP prefix

Attributes

used in route selection/exportation decisions

Describe route properties

are either local

or global

(only seen on iBGP)

(seen on iBGP and eBGP)

LOCAL-PREF outbound traffic control

MED inbound traffic control

AS-PATH loop avoidance

outbound traffic control

inbound traffic control

NEXT-HOP egress point identification

Attributes Usage

Prefer routes…

with higher LOCAL-PREF

with shorter AS-PATH length

with lower MED

learned via eBGP instead of iBGP

with lower IGP metric to the next-hop

with smaller egress IP address (tie-break)

Follow the Money

BGP Policies

Protocol

How does it work?

Problems

security, performance, …

3

Border Gateway Protocol

policies and more

This week on

Communication Networks

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We’re continuing our journey up the layers,

now looking at the transport layer

Communication Networks | Mon 6 Apr 2020 4 of 18

But first…

Let's finish BGP

BGP UPDATEs carry an IP prefix
together with a set of attributes

IP prefix

Attributes

used in route selection/exportation decisions

Describe route properties

are either local

or global

(only seen on iBGP)

(seen on iBGP and eBGP)

LOCAL-PREF outbound traffic control

MED inbound traffic control

AS-PATH loop avoidance

outbound traffic control

inbound traffic control

NEXT-HOP egress point identification

Attributes Usage

The NEXT-HOP is a global attribute which
indicates where to send the traffic next

82.130.64.0/18
NEXT-HOP: 11.0.0.1

82.130.64.0/18
NEXT-HOP: 10.0.0.1

AS 40 AS 50

AS 10

10.0.0.1

10.0.0.2
11.0.0.1

11.0.0.2

82.130.64.0/18
NEXT-HOP: 10.0.0.1

The NEXT-HOP is set when the route enters/exits an AS,

it does not change within the AS

82.130.64.0/18
NEXT-HOP: 11.0.0.1

82.130.64.0/18
NEXT-HOP: 10.0.0.1

AS 40 AS 50

AS 10

82.130.64.0/18
NEXT-HOP: 10.0.0.1

For externally-learned route, this means that the NEXT-HOP is

the IP address of the neighbor's eBGP router, here 10.0.0.1

10.0.0.1

10.0.0.2
11.0.0.1

11.0.0.2

11.0.0.1

11.0.0.2

82.130.64.0/18
NEXT-HOP: 11.0.0.1

AS 40 AS 50

AS 10

For this router, reaching 10.0.0.1 is not a problem as it is

directly connected to the corresponding subnet (10.0.0.0/30)

82.130.64.0/18
NEXT-HOP: 10.0.0.1

82.130.64.0/18
NEXT-HOP: 10.0.0.1

10.0.0.1

10.0.0.2

10.0.0.1

10.0.0.2
11.0.0.1

11.0.0.2

82.130.64.0/18
NEXT-HOP: 11.0.0.1

82.130.64.0/18
NEXT-HOP: 10.0.0.1

AS 40 AS 50

AS 10

That router is not directly to the NEXT-HOP subnet (10.0.0.0/30)

and does not know how to reach it, it will therefore drop the BGP route…

82.130.64.0/18
NEXT-HOP: 10.0.0.1 ??

Communication Networks | Mon 6 Apr 2020 5 of 18

AS 40 AS 50

AS 10

One solution is for the external router to redistribute

the prefixes attached to the external interfaces into the IGP

announce 10.0.0.0/30

in OSPF

10.0.0.1

10.0.0.2
11.0.0.1

11.0.0.2 AS 40 AS 50

Another solution is for the border router to rewrite the NEXT-HOP

before sending it over iBGP, usually to its

82.130.64.0/18
NEXT-HOP: 11.0.0.1

82.130.64.0/18
NEXT-HOP: 10.0.0.1

82.130.64.0/18
NEXT-HOP: 40.0.0.1

40.0.0.1 40.0.0.2
10.0.0.1

10.0.0.2
11.0.0.1

11.0.0.2

loopback address

AS 40 AS 50

Of course, need to be reachable network-wide.

Typically, each router advertise its loopback (as a /32) in the IGP

82.130.64.0/18
NEXT-HOP: 11.0.0.1

82.130.64.0/18
NEXT-HOP: 10.0.0.1

82.130.64.0/18
NEXT-HOP: 40.0.0.1

40.0.0.1 40.0.0.2
10.0.0.1

10.0.0.2
11.0.0.1

11.0.0.2

loopback address

AS 40 AS 50

This is the infamous next-hop-self policy

82.130.64.0/18
NEXT-HOP: 11.0.0.1

82.130.64.0/18
NEXT-HOP: 10.0.0.1

82.130.64.0/18
NEXT-HOP: 40.0.0.1

40.0.0.1 40.0.0.2
10.0.0.1

10.0.0.2
11.0.0.1

11.0.0.2

AS 43

AS 42

AS 41

AS 40

AS 50
40.0.0.1 40.0.0.2

11.0.0.1

11.0.0.2

The advantage of next-hop self is to spare the need to advertise

each prefix attached to an external link in the IGP

one NEXT-HOP, 40.0.0.1, is used
to reach routes announced by AS 40, 41, 42, 43

BGP suffers from many rampant problems

Reachability

Security

Convergence

Performance

Anomalies

Relevance

Problems

Reachability

Security

Convergence

Performance

Anomalies

Relevance

Problems covered last week

Many security considerations are

simply absent from BGP specifications

ASes can arbitrarily modify route content

e.g., change the content of the AS-PATH

ASes can advertise any prefixes

even if they don’t own them!

ASes can forward traffic along different paths

than the advertised one

Communication Networks | Mon 6 Apr 2020 6 of 18

BGP does not validate the origin of advertisements

BGP does not validate the content of advertisements

#1

#2

BGP (lack of) security

BGP does not validate the origin of advertisements

BGP does not validate the content of advertisements

#1

#2

BGP (lack of) security

Prefix	Hijacking

• Blackhole:	data	traffic	is	discarded	
• Snooping:	data	traffic	is	inspected,	then	redirected	
• Impersonation:	traffic	sent	to	bogus	destinations

1

2

3

4

5

67

12.34.0.0/16
12.34.0.0/16

Hijacking	is	Hard	to	Debug

• The	victim	AS	doesn’t	see	the	problem	
– Picks	its	own	route,	might	not	learn	the	bogus	route	

• May	not	cause	loss	of	connectivity	
– Snooping,	with	minor	performance	degradation	

• Or,	loss	of	connectivity	is	isolated	
– E.g.,	only	for	sources	in	parts	of	the	Internet	

• Diagnosing	prefix	hijacking	
– Analyzing	updates	from	many	vantage	points	
– Launching	traceroute	from	many	vantage	points

Sub-Prefix	Hijacking

• Originating	a	more-specific	prefix	
– Every	AS	picks	the	bogus	route	for	that	prefix	
– Traffic	follows	the	longest	matching	prefix

1

2

3

4

5

67

12.34.0.0/16
12.34.158.0/24

BGP does not validate the origin of advertisements

BGP does not validate the content of advertisements

#1

#2

BGP (lack of) security

Bogus	AS	Paths

• Remove	ASes	from	the	AS	path	
– E.g.,	turn	“701	3715	88”	into	“701	88”	

• Motivations	
– Attract	sources	that	normally	try	to	avoid	AS	3715	
– Help	AS	88	look	like	it	is	closer	to	the	Internet’s	core	

• Who	can	tell	that	this	AS	path	is	a	lie?	
– Maybe	AS	88	does	connect	to	AS	701	directly

701 883715

?

Bogus	AS	Paths

• Add	ASes	to	the	path	
– E.g.,	turn	“701	88”	into	“701	3715	88”	

• Motivations	
– Trigger	loop	detection	in	AS	3715	

• Denial-of-service	attack	on	AS	3715	
• Or,	blocking	unwanted	traffic	coming	from	AS	3715!	

– Make	your	AS	look	like	is	has	richer	connectivity	

• Who	can	tell	the	AS	path	is	a	lie?	
– AS	3715	could,	if	it	could	see	the	route	
– AS	88	could,	but	would	it	really	care?

701

88

Communication Networks | Mon 6 Apr 2020 7 of 18

Bogus	AS	Paths
• Adds	AS	hop(s)	at	the	end	of	the	path	

– E.g.,	turns	“701	88”	into	“701	88	3”	

• Motivations	
– Evade	detection	for	a	bogus	route	
– E.g.,	by	adding	the	legitimate	AS	to	the	end	

• Hard	to	tell	that	the	AS	path	is	bogus…	
– Even	if	other	ASes	filter	based	on	prefix	ownership

701

88
3

18.0.0.0/8
18.0.0.0/8

Invalid	Paths

• AS	exports	a	route	it	shouldn’t	
– AS	path	is	a	valid	sequence,	but	violated	policy	

• Example:	customer	misconfiguration	
– Exports	routes	from	one	provider	to	another	

• Interacts	with	provider	policy	
– Provider	prefers	customer	routes		
– Directing	all	traffic	through	customer	

• Main	defense	
– Filtering	routes	based	on	prefixes	and	AS	path

BGP

data

Missing/Inconsistent	Routes

• Peers	require	consistent	export	
– Prefix	advertised	at	all	peering	points	
– Prefix	advertised	with	same	AS	path	length	

• Reasons	for	violating	the	policy	
– Trick	neighbor	into	“cold	potato”	
– Configuration	mistake	

• Main	defense	
– Analyzing	BGP	updates,	or	traffic,	
– …	for	signs	of	inconsistency

src

dest

Bad AS

data

BGP

BGP	Security	Today	Yesterday

• Applying	best	common	practices	(BCPs)	
– Securing	the	session	(authentication,	encryption)	
– Filtering	routes	by	prefix	and	AS	path	
– Packet	filters	to	block	unexpected	control	traffic	

• This	is	not	good	enough	
– Depends	on	vigilant	application	of	BCPs	
– Doesn’t	address	fundamental	problems	

• Can’t	tell	who	owns	the	IP	address	block	
• Can’t	tell	if	the	AS	path	is	bogus	or	invalid	
• Can’t	be	sure	the	data	packets	follow	the	chosen	route

Route Origin Validation
using Resource Public Key Infrastructure (RPKI)

Path Validation
using BGPSec

Plain BGP
"web of trust"

today

BGP today is slowly becoming more secure

thanks to cryptography

Route Origin Validation
using Resource Public Key Infrastructure (RPKI)

Path Validation
using BGPSec

Plain BGP
"web of trust"

today

RPKI enables to validate the origin of a BGP route

by certifying IP prefixes allocations

Routers consult this database to verify BGP messages

BGP messages are not changed, RPKI works "out-of-band"

RPKI is a database storing Route Origin Authorization

ROAs map prefix space (130.0.0.0/8–32) to an origin AS

RPKI has been standardized in 2012 (RFC 6480)

today, RPKI can validate ~19% of the IPv4 prefixes

interdomain routing

NTT

Cyberbunker

34109

nLayer greenhost.nl

SCNet

29997

NTT, nLayer, SCNet, 29997
204.16.254.0/24

nLayer, SCNet, 29997
204.16.254.0/24

29997
204.16.254.0/24

SCNet, 29997
204.16.254.0/24

204.16.254.0/24

0.ns.spamhaus.org
204.16.254.40

BGP is used to learn routes between Autonomous Systems (ASes)

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

Let's look back at an example,

first without RPKI

Communication Networks | Mon 6 Apr 2020 8 of 18

the subprefix hijack of spamhaus from 03/2013

NTT

Cyberbunker

34109

nLayer

SCNet

29997

204.16.254.0/24

0.ns.spamhaus.org
204.16.254.40

Cyberbunker
34109

34109, 51787, 1198
204.16.254.40/32

?Choose the
more specific

prefix!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

Source: https://greenhost.nl/2013/03/21/spam-not-spam-tracking-hijacked-spamhaus-ip/

greenhost.nl

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

Here, we see that the attack is successful

the RPKI defeats all subprefix & prefix hijacks

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

34109, 51787, 1198
204.16.254.40/32

?Drop RPKI invalid
routes!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24
ROA

(Route Origin
Authorization)

greenhost.nl

3

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

Let's assume now that AS 29997 registers

(204.16.254.0/24–32, 29997) as a new ROA

the RPKI defeats all subprefix & prefix hijacks

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

34109, 51787, 1198
204.16.254.40/32

?Drop RPKI invalid
routes!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24
ROA

(Route Origin
Authorization)

greenhost.nl

3

the RPKI defeats all subprefix & prefix hijacks

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

34109, 51787, 1198
204.16.254.40/32

?Drop RPKI invalid
routes!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24
ROA

(Route Origin
Authorization)

greenhost.nl

3

the RPKI defeats all subprefix & prefix hijacks

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

34109, 51787, 1198
204.16.254.40/32

?Drop RPKI invalid
routes!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24
ROA

(Route Origin
Authorization)

greenhost.nl

3

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

Using the RPKI, greenhost.nl sees that AS34109

is not a valid origin for 204.16.254.40/32

the RPKI defeats all subprefix & prefix hijacks

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

34109, 51787, 1198
204.16.254.40/32

?Drop RPKI invalid
routes!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24
ROA

(Route Origin
Authorization)

greenhost.nl

3

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

This announcement is said to be INVALID

the RPKI defeats all subprefix & prefix hijacks

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

34109, 51787, 1198
204.16.254.40/32

?Drop RPKI invalid
routes!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24
ROA

(Route Origin
Authorization)

greenhost.nl

3

the “1-hop hijack” defeats the RPKI

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

?Both routes valid.
Choose short one!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24

34109, 29997
204.16.254.40/24

(This exact situation is hypothetical, but this type of attack has been seen in the wild,
See [Schlamp, Carle, Biersack 2013])

greenhost.nl

3

3

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

Now what if AS34109 announce AS29997 as the origin?

the “1-hop hijack” defeats the RPKI

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

?Both routes valid.
Choose short one!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24

34109, 29997
204.16.254.40/24

(This exact situation is hypothetical, but this type of attack has been seen in the wild,
See [Schlamp, Carle, Biersack 2013])

greenhost.nl

3

3

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

Here greenhost.nl receives 2 valid RPKI routes:

one via NTT and another one via 34109

the “1-hop hijack” defeats the RPKI

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

?Both routes valid.
Choose short one!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24

34109, 29997
204.16.254.40/24

(This exact situation is hypothetical, but this type of attack has been seen in the wild,
See [Schlamp, Carle, Biersack 2013])

greenhost.nl

3

3

the “1-hop hijack” defeats the RPKI

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

?Both routes valid.
Choose short one!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24

34109, 29997
204.16.254.40/24

(This exact situation is hypothetical, but this type of attack has been seen in the wild,
See [Schlamp, Carle, Biersack 2013])

greenhost.nl

3

3

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

As the route via 34109 has a shorter path,

it is preferred… the attack works again!

the “1-hop hijack” defeats the RPKI

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

?Both routes valid.
Choose short one!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24

34109, 29997
204.16.254.40/24

(This exact situation is hypothetical, but this type of attack has been seen in the wild,
See [Schlamp, Carle, Biersack 2013])

greenhost.nl

3

3

the “1-hop hijack” defeats the RPKI

NTT

Cyberbunker

AS 34109

nLayer

SCNet

29997

204.16.254.0/24

Cyberbunker
34109

?Both routes valid.
Choose short one!

NTT, nLayer, SCNet, 29997
204.16.254.0/24

RPKI
AS 29997

204.16.254.0/24

34109, 29997
204.16.254.40/24

(This exact situation is hypothetical, but this type of attack has been seen in the wild,
See [Schlamp, Carle, Biersack 2013])

greenhost.nl

3

3

Source: Sharon Goldberg, "The Transition to BGP Security. Is the Juice Worth the Squeeze?"

We see that RPKI does not protect against all attacks

Communication Networks | Mon 6 Apr 2020 9 of 18

Route Origin Validation
using Resource Public Key Infrastructure (RPKI)

Path Validation
using BGPSec

Plain BGP
"web of trust"

today

Public Key Signature: Anyone who knows v’s public key can
verify that the message was sent by v.

a1

a2

v a3

m

a1: (v, Prefix)

a1: (v, Prefix)

m: (a1, v, Prefix)

Secure	BGP
Origin + Path Authentication using cryptographic signatures

S-BGP	Secure	Version	of	BGP
• Address	attestations	

– Claim	the	right	to	originate	a	prefix	
– Signed	and	distributed	out-of-band	
– Checked	through	delegation	chain	from	ICANN	

• Route	attestations	
– Distributed	as	an	attribute	in	BGP	update	message	
– Signed	by	each	AS	as	route	traverses	the	network	

• S-BGP	can	validate	
– AS	path	indicates	the	order	ASes	were	traversed	
– No	intermediate	ASes	were	added	or	removed	

S-BGP	Deployment	Challenges

• Complete,	accurate	registries	of	prefix	“owner”	
• Public	Key	Infrastructure	

– To	know	the	public	key	for	any	given	AS	

• Cryptographic	operations	
– E.g.,	digital	signatures	on	BGP	messages	

• Need	to	perform	operations	quickly	
– To	avoid	delaying	response	to	routing	changes	

• Difficulty	of	incremental	deployment	
– Hard	to	have	a	“flag	day”	to	deploy	S-BGP

Reachability

Security

Convergence

Performance

Anomalies

Relevance

Problems

switch back to last week's slides

That's it!

for the network layer, and for now…

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We’re continuing our journey up the layers,

now looking at the transport layer
● Functionality implemented in network

● Keep minimal (easy to build, broadly applicable)

● Functionality implemented in the application
● Keep minimal (easy to write)
● Restricted to application-specific functionality

● Functionality implemented in the “network stack”
● The shared networking code on the host
● This relieves burden from both app and network
● The transport layer is a key component here

What do we need in the Transport layer?

Communication Networks | Mon 6 Apr 2020 10 of 18

What do we need in the Transport layer?

● Application layer
● Communication for specific applications
● e.g., HyperText Transfer Protocol (HTTP),

 File Transfer Protocol (FTP)

● Network layer
● Global communication between hosts
● Hides details of the link technology
● e.g., Internet Protocol (IP)

What Problems Should Be Solved Here?

● Data delivering, to the correct application
● IP just points towards next protocol
● Transport needs to demultiplex incoming data (ports)

● Files or bytestreams abstractions for the applications
● Network deals with packets
● Transport layer needs to translate between them

● Reliable transfer (if needed)
● Not overloading the receiver
● Not overloading the network

What Is Needed to Address These?

● Demultiplexing: identifier for application process
● Going from host-to-host (IP) to process-to-process

● Translating between bytestreams and packets:
● Do segmentation and reassembly

● Reliability: ACKs and all that stuff
● Corruption: Checksum
● Not overloading receiver: “Flow Control”

● Limit data in receiver’s buffer
● Not overloading network: “Congestion Control”

UDP: Datagram messaging service

● No-frills extension of “best-effort” IP

● UDP provides only two services to the App layer
● Multiplexing/Demultiplexing among processes
● Discarding corrupted packets (optional)

● UDP provides a connectionless, unreliable transport service

TCP: Reliable, in-order delivery

● TCP provides a connection-oriented, reliable, bytestream
transport service

● What UDP provides, plus:
● Retransmission of lost and corrupted packets

● Flow control (to not overflow receiver)
● Congestion control (to not overload network)
● “Connection” set-up & tear-down

Connections (or sessions)

● Reliability requires keeping state
● Sender: packets sent but not ACKed, and related timers
● Receiver: noncontiguous packets

● Each bytestream is called a connection or session
● Each with their own connection state
● State is in hosts, not network!

●

What transport protocols do not provide

● Delay and/or bandwidth guarantees
● This cannot be offered by transport
● Requires support at IP level (and let’s not go there)

● Sessions that survive change-of-IP-address
● This is an artifact of current implementations
● As we shall see….

Important Context: Sockets and Ports

● Sockets: an operating system abstraction

● Ports: a networking abstraction
● This is not a port on a switch (which is an interface)
● Think of it as a logical interface on a host

Communication Networks | Mon 6 Apr 2020 11 of 18

Sockets

● A socket is a software abstraction by which an application process
exchanges network messages with the (transport layer in the)
operating system
● socketID = socket(…, socket.TYPE)
● socketID.sendto(message, …)
● socketID.recvfrom(…)

● Two important types of sockets
● UDP socket: TYPE is SOCK_DGRAM
● TCP socket: TYPE is SOCK_STREAM

Ports

● Problem: which app (socket) gets which packets

● Solution: port as transport layer identifier (16 bits)
● Packet carries source/destination port numbers

in transport header

● OS stores mapping between sockets and ports
● Port: in packets
● Socket: in OS

More on Ports

● Separate 16-bit port address space for UDP, TCP

● “Well known” ports (0-1023)
● Agreement on which services run on these ports
● e.g., ssh:22, http:80
● Client (app) knows appropriate port on server
● Services can listen on well-known port

● Ephemeral ports (most 1024-65535):
● Given to clients (at random)

Multiplexing and Demultiplexing
● Host receives IP datagrams

● Each datagram has source and destination IP address,
● Each segment has source and destination port number

● Host uses IP addresses and port numbers to direct the segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL)

6 = TCP
17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL)

6 = TCP
17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

16-bit Source Port 16-bit Destination Port

More transport header fields ….

Communication Networks | Mon 6 Apr 2020 12 of 18

UDP

UDP: User Datagram Protocol
● Lightweight communication between processes

● Avoid overhead and delays of ordered, reliable delivery
● Send messages to and receive them from a socket

● UDP described in RFC 768 – (1980!)
● IP plus port numbers to support (de)multiplexing
● Optional error checking on the packet contents
● (checksum field = 0 means “don’t verify checksum”)

 SRC port DST port

checksum length

DATA

Why Would Anyone Use UDP?

● Finer control over what data is sent and when
● As soon as an application process writes into the socket
● … UDP will package the data and send the packet

● No delay for connection establishment
● UDP just blasts away without any formal preliminaries
● … which avoids introducing any unnecessary delays

● No connection state
● No allocation of buffers, sequence #s, timers …
● … making it easier to handle many active clients at once

● Small packet header overhead
● UDP header is only 8 bytes

Popular Applications That Use UDP

● Some interactive streaming apps
● Retransmitting lost/corrupted packets often pointless:

by the time the packet is retransmitted, it’s too late
● telephone calls, video conferencing, gaming…
● Modern streaming protocols using TCP (and HTTP)

● Simple query protocols like Domain Name System (DNS)
● Connection establishment overhead would double cost
● Easier to have application retransmit if needed

“Address for bbc.co.uk?”

“212.58.224.131”

TCP

Transmission Control Protocol (TCP)

● Reliable, in-order delivery (previously, but quick review)

● Ensures byte stream (eventually) arrives intact
● In the presence of corruption and loss

● Connection oriented (today)

● Explicit set-up and tear-down of TCP session
● Full duplex stream-of-bytes service (today)

● Sends and receives a stream of bytes, not messages
● Flow control (previously, but quick review)

● Ensures that sender doesn’t overwhelm receiver
● Congestion control (next week)

● Dynamic adaptation to network path’s capacity

Basic Components of Reliability

● ACKs
● Can’t be reliable without knowing whether data has arrived
● TCP uses byte sequence numbers to identify payloads

● Checksums
● Can’t be reliable without knowing whether data is corrupted
● TCP does checksum over TCP and pseudoheader

● Timeouts and retransmissions
● Can’t be reliable without retransmitting lost/corrupted data
● TCP retransmits based on timeouts and duplicate ACKs
● Timeout based on estimate of RTT

Other TCP Design Decisions

● Sliding window flow control
● Allow W contiguous bytes to be in flight

● Cumulative acknowledgements
● Selective ACKs (full information) also supported (ignore)

● Single timer set after each payload is ACKed
● Timer is effectively for the “next expected payload”
● When timer goes off, resend that payload and wait
● And double timeout period

● Various tricks related to “fast retransmit”
● Using duplicate ACKs to trigger retransmission

Communication Networks | Mon 6 Apr 2020 13 of 18

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Segments and Sequence Numbers

TCP “Stream of Bytes” Service…

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Application @ Host A

Application @ Host B

B
yte 80

B
yte 80

… Provided Using TCP “Segments”
B

yte 0
B

yte 1
B

yte 2
B

yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out

TCP Segment

● IP packet
● No bigger than Maximum Transmission Unit (MTU)
● E.g., up to 1500 bytes with Ethernet

● TCP packet
● IP packet with a TCP header and data inside
● TCP header ≥ 20 bytes long

●
TCP segment
● No more than Maximum Segment Size (MSS) bytes
● E.g., up to 1460 consecutive bytes from the stream
● MSS = MTU – (IP header) – (TCP header)

IP Hdr
IP Data

TCP HdrTCP Data (segment)

Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number
= 1st byte in segment =

ISN + k

k bytes

Sequence Numbers

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ACK sequence number
= next expected byte

= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number
= 1st byte in segment =

ISN + k

k

ACKing and Sequence Numbers

● Sender sends packet
● Data starts with sequence number X
● Packet contains B bytes
● X, X+1, X+2, ….X+B-1

● Upon receipt of packet, receiver sends an ACK
● If all data prior to X already received:
● ACK acknowledges X+B (because that is next expected byte)

● If highest contiguous byte received is smaller value Y
● ACK acknowledges Y+1
● Even if this has been ACKed before

Communication Networks | Mon 6 Apr 2020 14 of 18

Normal Pattern

● Sender: seqno=X, length=B
● Receiver: ACK=X+B
●

Sender: seqno=X+B, length=B
● Receiver: ACK=X+2B
●

Sender: seqno=X+2B, length=B
● …

● Seqno of next packet is same as last ACK field

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Sliding Window Flow Control

● Advertised Window: W
● Can send W bytes beyond the next expected byte

● Receiver uses W to prevent sender from overflowing buffer

● Limits number of bytes sender can have in flight

Advertised Window Limits Rate

● Sender can send no faster than W/RTT bytes/sec

● Receiver only advertises more space when it has consumed old
arriving data

● In original TCP design, that was the sole protocol mechanism
controlling sender’s rate

● What’s missing?

Implementing Sliding Window

● Both sender & receiver maintain a window
● Sender: not yet ACK’ed
● Receiver: not yet delivered to application

● Left edge of window:
● Sender: beginning of unacknowledged data
● Receiver: beginning of undelivered data

● For the sender:
● Window size = maximum amount of data in flight

● For the receiver:
● Window size = maximum amount of undelivered data

Sliding Window Summary

● Sender: window advances when new data ack’d

● Receiver: window advances as receiving process consumes data

● Receiver advertises to the sender where the receiver window
currently ends (“righthand edge”)
● Sender agrees not to exceed this amount
● It makes sure by setting its own window size to a value that

can’t send beyond the receiver’s righthand edge

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

Number of 4-byte
words in TCP
header;
5 = no options

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG
flag to indicate
urgent data (not
discussed further)

Communication Networks | Mon 6 Apr 2020 15 of 18

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

TCP Connection Establishment and Initial
Sequence Numbers

Initial Sequence Number (ISN)

● Sequence number for the very first byte
● E.g., Why not just use ISN = 0?

● Practical issue
● IP addresses and port #s uniquely identify a connection
● Eventually, though, these port #s do get used again
● … small chance an old packet is still in flight

● TCP therefore requires changing ISN
● initially set from 32-bit clock that ticks every 4 microseconds
● now drawn from a pseudo random number generator (security)

● To establish a connection, hosts exchange ISNs
● How does this help?

Establishing a TCP Connection

● Three-way handshake to establish connection
● Host A sends a SYN (open; “synchronize sequence numbers”)
● Host B returns a SYN acknowledgment (SYN ACK)
● Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells
its ISN to the
other host.

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG

See /usr/include/netinet/tcp.h on Unix Systems

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5=20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…

Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window20B 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags

Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data

Communication Networks | Mon 6 Apr 2020 16 of 18

Timing Diagram: 3-Way Handshaking

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect()

listen()

accept()

What if the SYN Packet Gets Lost?

● Suppose the SYN packet gets lost
● Packet is lost inside the network, or:
● Server discards the packet (e.g., listen queue is full)

● Eventually, no SYN-ACK arrives
● Sender sets a timer and waits for the SYN-ACK
● … and retransmits the SYN if needed

● How should the TCP sender set the timer?
● Sender has no idea how far away the receiver is
● Hard to guess a reasonable length of time to wait
● SHOULD (RFCs 1122 & 2988) use default of 3 seconds
● Other implementations instead use 6 seconds

SYN Loss and Web Downloads

● User clicks on a hypertext link
● Browser creates a socket and does a “connect”
● The “connect” triggers the OS to transmit a SYN

● If the SYN is lost…
● 3-6 seconds of delay: can be very long
● User may become impatient
● … and click the hyperlink again, or click “reload”

● User triggers an “abort” of the “connect”
● Browser creates a new socket and another “connect”
● Essentially, forces a faster send of a new SYN packet!
● Sometimes very effective, and the page comes quickly

Tearing Down the Connection

Normal Termination, One Side At A Time

● Finish (FIN) to close and receive remaining bytes
● FIN occupies one octet in the sequence space

● Other host ack’s the octet to confirm
● Closes A’s side of the connection, but not B’s

● Until B likewise sends a FIN
● Which A then acks

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B

FIN

A
CK

Timeout:

Avoid reincarnation
B will retransmit FIN
if ACK is lost

Connection
now half-closed

Connection
now closed

Normal Termination, Both Together

● Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

FIN
 + A

CK

A
CK

time
A

B
A

CK

Connection
now closed

Timeout:

Avoid reincarnation
Can retransmit
FIN ACK if ACK lost

Abrupt Termination

● A sends a RESET (RST) to B
● E.g., because app. process on A crashed

● That’s it
● B does not ack the RST
● Thus, RST is not delivered reliably
● And: any data in flight is lost
● But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T

TCP State Transitions

Data, ACK
exchanges
are in here

Communication Networks | Mon 6 Apr 2020 17 of 18

Reliability: TCP Retransmission

Timeouts and Retransmissions

● Reliability requires retransmitting lost data

● Involves setting timer and retransmitting on timeout

● TCP resets timer whenever new data is ACKed
● Retx of packet containing “next byte” when timer goes off

Setting the Timeout Value

1

1

Timeout too long ! inefficient

1

1

Timeout too short !
duplicate packets

RTT

Timeout

Timeout

RTT

RTT Estimation

● Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime−SendPacketTime
EstimatedRTT =α ×EstimatedRTT + (1−α)×SampleRTT
0 <α ≤1

E
st
im
at
ed
R
TT

Time

SampleRTT

Exponential Averaging Example

RTT

time

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT
Assume RTT is constant ! SampleRTT = RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)

Problem: Ambiguous Measurements

● How do we differentiate between the real ACK, and ACK of the
retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver

ACK
Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver

Karn/Partridge Algorithm

● Measure SampleRTT only for original transmissions
● Once a segment has been retransmitted, do not use it for any

further measurements
● Computes EstimatedRTT using α = 0.875

● Timeout value (RTO) = 2 × EstimatedRTT

● Use exponential backoff for repeated retransmissions
● Every time RTO timer expires, set RTO ← 2·RTO
● (Up to maximum ≥ 60 sec)

● Every time new measurement comes in (= successful original
transmission), collapse RTO back to 2 × EstimatedRTT

This is all very interesting, but…..

● Implementations often use a coarse-grained timer
● 500 msec is typical

● So what?
● Above algorithms are largely irrelevant
● Incurring a timeout is expensive

● So we rely on duplicate ACKs

Communication Networks | Mon 6 Apr 2020 18 of 18

Loss with cumulative ACKs

● Sender sends packets with 100B and seqnos.:
● 100, 200, 300, 400, 500, 600, 700, 800, 900, …

● Assume the fifth packet (seqno 500) is lost, but no others

● Stream of ACKs will be:
● 200, 300, 400, 500, 500, 500, 500,…

Loss with cumulative ACKs

● “Duplicate ACKs” are a sign of an isolated loss
● The lack of ACK progress means 500 hasn’t been delivered
● Stream of ACKs means some packets are being delivered

● Therefore, could trigger resend upon receiving k duplicate ACKs
● TCP uses k=3

● We will revisit this in congestion control

Communication Networks

Spring 2020

ETH Zürich (D-ITET)

Laurent Vanbever

April 6 2020

nsg.ee.ethz.ch

