
Communication Networks

Spring 2020

ETH Zürich (D-ITET)

Laurent Vanbever

March 2 2020

Materials inspired from Scott Shenker & Jennifer Rexford

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

Internet Routing Hackathon, Edition 2020

Thursday March 26, 18:00 in ETZ foyer

Register your group (3 students) starting from

Thursday March 5 (see website)

Last week on

Communication Networks

What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?

#4

Communication Networks

Part 1: General overview

The Internet should allow

processes on different hosts

everything else is just commentary…

to exchange data

In practice, there exists a lot of network protocols.

How does the Internet organize this?

Each layer provides a service to the layer above

by using the services of the layer directly below it

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

What is a network made of?

How is it shared?

How is it organized?

How does communication happen?

How do we characterize it?#5

Communication Networks

Part 1: General overview

throughputlossdelay

How long does it take for a packet to reach the destination

What fraction of packets sent to a destination are dropped?

At what rate is the destination receiving data from the source?

A network connection is characterized by

its delay, loss rate and throughput

This week on

Communication Networks

We will dive in the two fundamental

challenges underlying networking

routing
reliable

delivery

routing
reliable

delivery

How do you guide IP packets

from a source to destination?

How do you ensure reliable transport

on top of best-effort delivery?

routing
reliable

delivery

How do you guide IP packets

from a source to destination?

question 1

question 2

How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?

How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?

question 1

Mark all outgoing ports with an arrow

Eliminate all links with no arrow

State is valid iff the remaining graph

is a spanning-tree

simple algorithm

for one destination

Verifying that a routing state is valid is easy

X

dest

X

dest output

East

dest output

WestX

Given a graph with the corresponding forwarding state

X

Mark all outgoing ports with an arrow

X

Eliminate all links with no arrow

X

X

The result is a spanning tree.

This is a valid routing state

X

Mark all outgoing ports with an arrow

X

Eliminate all links with no arrow

X

The result is not a spanning-tree.

The routing state is not valid

loop

dead-end

question 2

How do we verify that a forwarding state is valid?

How do we compute valid forwarding state?

Producing valid routing state is harder,

but doable

prevent dead ends

easy

prevent loops

hard

This is the question

you should focus on

prevent dead ends

easy

prevent loops

hard

Producing valid routing state is harder

but doable

prevent loops

hard

Existing routing protocols differ in

how they avoid loops

it’s your turn

…to figure out a way to route traffic in a network

instructions given in class

Before I give you all the answers

Essentially,

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

#2

#3

BGP

SDN

Intuition Example

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

BGP

SDN

Essentially,

there are three ways to compute valid routing state

The easiest way to avoid loops is to route traffic

on a loop-free topology

Take an arbitrary topology

Build a spanning tree and

ignore all other links

Done!

simple algorithm

Why does it work? Spanning-trees have only one path

between any two nodes

In practice,

there can be many spanning-trees for a given topology

Spanning-Tree #1

Spanning-Tree #2

Spanning-Tree #3

We’ll see how to compute spanning-trees in 2 weeks.

For now, assume it is possible

literally just flood

the packets everywhere

Once we have a spanning tree,

forwarding on it is easy

A

B

When a packet arrives,

simply send it on all ports

While flooding works,

it is quite wasteful

A

B

Useless transmissions

The issue is that nodes do not know their

respective locations

Nodes can learn how to reach nodes

by remembering where packets came from

then

intuition

switch X can use port 4

to reach node A

flood packet from node A

entered switch X on port 4

if

A

B

A

Node A can be reached

through this port

B

A

B

A

B

All the green nodes learn how to reach A

A

All the green nodes learn how to reach A

B

A

All the nodes know on which port

A can be reached

B

A

B

B answers back to A

enabling the green nodes to also learn where B is

A

B

There is no need for flooding here

as the position of A is already known by everybody

A

B

Learning is topology-dependent

The blue nodes only know how to reach A (not B)

Routing by flooding on a spanning-tree

in a nutshell

When destination answers, some switches learn where it is

some because packet to you is not flooded anymore

Flood first packet to node you’re trying to reach

all switches learn where you are

The decision to flood or not is done on each switch

depending on who has communicated before

Spanning-Tree in practice

used in Ethernet

advantages disadvantages

plug-and-play

configuration-free

automatically adapts

to moving host

slow to react to failures

mandate a spanning-tree

eliminate many links from the topology

slow to react to host movement

Essentially,

there are three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#2

BGP

SDN

If each router knows the entire graph,

it can locally compute paths to all other nodes

Initialization Loop

Once a node u knows the entire topology,

it can compute shortest-paths using Dijkstra’s algorithm

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S:

D(v) = min{D(v), D(w) + c(w,v)}

while not all nodes in S:S = {u}

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v)

else:

D(v) = ∞

for all nodes v:

if (v is adjacent to u):

else:

S = {u}

u is the node running the algorithm

D(v) = c(u,v) c(u,v) is the weight of the link

connecting u and v

D(v) = ∞

D(v) is the smallest distance

currently known by u to reach v

2 1

1

2

1
4

5

4 3

Let’s compute the shortest-paths

from u

u

3

A B

C D

E F

G

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

Initialization

S = {u}

for all nodes v:

if (v is adjacent to u):

D(v) = c(u,v)

else:

D(v) = ∞

2 1

1

2

1
4

5

4 3

D is initialized based on u’s weight,

and S only contains u itself

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

S = {u}

u

2 1

1

2

1
4

5

4 3

3

A B

C D

E F

G

u

Loop

add w with the smallest D(w) to S

update D(v) for all adjacent v not in S:

D(v) = min{D(v), D(w) + c(w,v)}

while not all nodes in S:

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

u

smallest D(w)

S = {u}

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

∞

∞

3

2

u

add E to S

S = {u, E}

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

3

∞

∞

6

3

2

u D(v) = min{∞, 2 + 1}

S = {u, E}

D(v) = min{∞, 2 + 4}

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

∞

∞

∞

3

u

S = {u, E}

3

6

2

Now, do it by yourself

2 1

1

2

1
4

5

4 3

3

D(.) =
A B

C D

E F

G

A

B

C

D

E

F

G

5

6

8

3

u 3

6

2

Here is the final state

S = {u, A,

 B, C, D, E,

 F,G}

This algorithm has a O(n2) complexity

where n is the number of nodes in the graph

iteration #1 search for minimum through n nodes

iteration #2 search for minimum through n-1 nodes

iteration n search for minimum through 1 node

n(n+1) operations => O(n2)

2

Better implementations rely on a heap

to find the next node to expand,

bringing down the complexity to O(n log n)

This algorithm has a O(n2) complexity

where n is the number of nodes in the graph

2 1

1

2

1
4

5

4 3

3

Forwarding table

A B

C D

E F

G

A

B

C

D

E

F

G

A

E

A

u

E

E

From the shortest-paths,

u can directly compute its forwarding table

destination next-hop

A

E

To build this global view

routers essentially solve a jigsaw puzzle

2 1

1

2

1
4

5

4 3

Initially,

routers only know their ID and their neighbors

u

3

A B

C D

E F

G

D only knows,

it is connected to B and C

along with the weights to reach them

(by configuration)

2 1

1

2

1
4

5

4 3

Each routers builds a message (known as Link-State)

and floods it (reliably) in the entire network

u

3

A B

C

E F

G

D edge (D,B); cost: 1

edge (D,C); cost: 4

D’s Advertisement

required for correctness

see exercise

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

At the end of the flooding process,

everybody share the exact same view of the network

cf. exercice session

for the dynamic case

Dijkstra will always converge to a unique stable state

when run on static weights

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector#3

BGP

SDN

Essentially,

there are three ways to compute valid routing state

Instead of locally compute paths based on the graph,

paths can be computed in a distributed fashion

Let dx(y) be the cost of the least-cost path

known by x to reach y

Let dx(y) be the cost of the least-cost path

known by x to reach y

Each node bundles these distances

into one message (called a vector)

that it repeatedly sends to all its neighborsuntil convergence

Let dx(y) be the cost of the least-cost path

known by x to reach y

Each node bundles these distances

into one message (called a vector)

that it repeatedly sends to all its neighbors

Each node updates its distances

based on neighbors’ vectors:

dx(y) = min{ c(x,v) + dv(y) } over all neighbors v

until convergence

2 1

1

2

1
4

5

4 3

Let’s compute the shortest-path

from u to D

u

3

A B

C D

E F

G

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

dx(y) = min{ c(x,v) + dv(y) }

over all neighbors v

du(D) = min{ c(u,A) + dA(D),

 c(u,E) + dE(D) }

The values computed by a node u

depends on what it learns from its neighbors (A and E)

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

dB(D) = 1

dC(D) = 4

To unfold the recursion,

let’s start with the direct neighbor of D

2 1

1

2

1
4

5

4 3

B and C announce their vector to their neighbors,

enabling A to compute its shortest-path

u

3

A B

C D

E F

G

dA(D) = min { 2 + dB(D),

 1 + dC(D)}

1

4
= 3

2 1

1

2

1
4

5

4 3

As soon as a distance vector changes,

each node propagates it to its neighbor

u

3

A B

C D

E F

G

dE(D) = min { 1 + dC(D),

 4 + dG(D),

 2 + du(D)}

= 5

2 1

1

2

1
4

5

4 3

u

3

A B

C D

E F

G

= 6

du(D) = min { 3 + dA(D),

 2 + dE(D) }

Eventually, the process converges

to the shortest-path distance to each destination

the one which advertised the smallest cost

As before, u can directly infer its forwarding table

by directing the traffic to the best neighbor

Evaluating the complexity of DV is harder,

we’ll get back to that in a couple of weeks

routing
reliable

delivery

How do you ensure reliable transport

on top of best-effort delivery?

Communication Networks

Part 2: Concepts

In the Internet, reliability is ensured by

the end hosts, not by the network

The Internet puts reliability in L4,

just above the Network layer

Keep applications as network “unaware” as possible

a developer should focus on its app, not on the network

Keep the network simple, dumb

make it relatively “easy” to build and operate a network

goals

Implement reliability in-between, in the networking stack

relieve the burden from both the app and the network

design

Application

Transport

Network

Link

Physical

L4

L3

layer

The Internet puts reliability in L4,

just above the Network layer

reliable end-to-end delivery

global best-effort delivery

Application

Transport

Network

Link

Physical

L4

L3

layer

Recall that the Network provides a best-effort service,

with quite poor guarantees

reliable end-to-end delivery

global best-effort delivery

Let’s consider a simple communication

between two end-points, Alice and Bob

packet 1

packet 2

packet 3

Alice BobInternet

packet 1

packet 2

packet 3

IP packets can get lost or delayed

packet 1

packet 2

packet 3

packet 2

Alice BobInternet

IP packets can get corrupted

payload: 101

payload: 010

payload: 42

Alice BobInternet

payload: 001

payload: 010

payload: 101

IP packets can get reordered

Internet

packet 1

packet 2

packet 3 packet 1

packet 2

packet 3

Alice Bob

IP packets can get duplicated

Internet

packet 1

packet 2

packet 3

packet 1

packet 2

packet 3

packet 1

packet 1

Alice Bob

Reliable Transport

if-and-only if again

Correctness condition1

Design space

timeliness vs efficiency vs …

2

Examples

Go-Back-N & Selective Repeat

3

Reliable Transport

if-and-only if again

Correctness condition1

Design space

Examples

Go-Back-N & Selective Repeat

timeliness vs efficiency vs …

The four goals of reliable transfer

minimize time until data is transferred

ensure data is delivered, in order, and untouched

optimal use of bandwidth

correctness

timeliness

efficiency

goals

fairness play well with concurrent communications

ensure data is delivered, in order, and untouchedcorrectness

goals

Routing had a clean sufficient and necessary

correctness condition

sufficient and necessary condition

a global forwarding state is valid if and only ifTheorem

no outgoing port defined in the table

there are no dead ends

packets going around the same set of nodes

there are no loops

We need the same kind of “if and only if” condition

for a “correct” reliable transport design

attempt #1

Consider that the network is partitioned

We cannot say a transport design is incorrect

if it doesn’t work in a partitioned network…

Wrong

packets are delivered to the receiver

A reliable transport design is correct if…

packets are delivered to receiver if and only if attempt #2

Wrong If the network is only available one instant in time,

We cannot say a transport design is incorrect

if it doesn’t know the unknowable

only an oracle would know when to send

it was possible to deliver them

A reliable transport design is correct if…

attempt #3

Consider two casesWrong

It resends a packet if and only if

packets make it to the receiver,
all packets from receiver were dropped

packets are dropped on the way,

all packets from receiver were dropped

packet made it to the receiver and

packet is dropped on the way and

the previous packet was lost or corrupted

A reliable transport design is correct if…

attempt #3

In both case, the sender has no feedback at allWrong

Does it resend or not?

It resends a packet if and only if

the previous packet was lost or corrupted

A reliable transport design is correct if…

attempt #3

Wrong

but better as it refers to what the design does (which it can control),

not whether it always succeeds (which it can’t)

It resends a packet if and only if

the previous packet was lost or corrupted

A reliable transport design is correct if…

attempt #4

Correct!

A packet is always resent if

the previous packet was lost or corrupted

A packet may be resent at other times

A reliable transport design is correct if…

Sufficient algorithm will always keep trying

Necessary

“if”

“only if”

to deliver undelivered packets

if it ever let a packet go undelivered

without resending it, it isn’t reliable

A transport mechanism is correct

if and only if it resends all dropped or corrupted packets

Note it is ok to give up after a while but

must announce it to the application

Reliable Transport

if-and-only if again

Correctness condition

Design space2

Examples

Go-Back-N & Selective Repeat

timeliness vs efficiency vs …

let’s focus on these aspects first

Now, that we have a correctness condition

how do we achieve it and with what tradeoffs?

lostpackets can get

corrupted

reordered

delayed

duplicated

Design a correct, timely, efficient and fair transport mechanism

knowing that

send_packet(word);

set_timer();

upon timer going off:

if no ACK received:

send_packet(word);

reset_timer();

receive_packet(p);

send_ack();

if word not delivered:

deliver_word(word);

for word in list:

upon ACK:

pass;

BobAlice

if check(p.payload) == p.checksum:

else:

pass;

There is a clear tradeoff between timeliness and efficiency

in the selection of the timeout value

send_packet(word);

set_timer();

upon timer going off:

if no ACK received:

send_packet(word);

reset_timer();

for word in list:

upon ACK:

pass

receive_packet(p);

send_ack();

if word not delivered:

deliver_word(word);

if check(p.payload) == p.checksum:

else:

pass;

Timeliness argues for small timers,

efficiency for large ones

efficiency

small

timers

unnecessary retransmissions

large

timers

timeliness

slow transmission

risk risk

packet 1

ACK

packet 2

ACK

BobAlice

Even with short timers, the timeliness of our protocol is

extremely poor: one packet per Round-Trip Time (RTT)

An obvious solution to improve timeliness is

to send multiple packets at the same time

add sequence number inside each packet

store packets sent & not acknowledged

store out-of-sequence packets received

sender

receiver

add buffers to the sender and receiver

approach

BobAlice
packet 1

packet 3

packet 2

packet 4

4 packets

sent w/o

ACKs

supercomputer

…

sends 1000 packet/s can process 10 packet/s

overwhelmed
smartphone

Sending multiple packets improves timeliness,

but it can also overwhelm the receiver

packet 1
packet 2

packet 1000

To solve this issue,

we need a mechanism for flow control

Using a sliding window is one way to do that

Receiver also keeps a list of the acceptable sequence #

known as the receiving window

Sender keeps a list of the sequence # it can send

known as the sending window

Sender and receiver negotiate the window size

sending window <= receiving window

1 2 3 4 5 6 7 8 9 10 11 ...0

ACKed

packets

unACK’ed

packets

available

packets

forbidden

packets

Example with a window composed of 4 packets

1 2 3 4 5 6 7 8 9 10 11 ...0

ACKed

packets

unACK’ed

packets

available

packets

forbidden

packets

Window after sender receives ACK 4

Timeliness of the window protocol depends on

the size of the sending window

Assuming infinite buffers,

how big should the window be to maximize timeliness?

BobAlice

100 Mbps, 5 ms (one-way)

What should be the value of W?
(in bytes)

Timeliness matters,

but what about efficiency?

The efficiency of our protocol

essentially depends on two factors

receiver

feedback

behavior

upon losses

How much information

does the sender get?

How does the sender

detect and react to losses?

The efficiency of our protocol

essentially depends on two factors

receiver

feedback

behavior

upon losses

How much information

does the sender get?

ACKing individual packets provides detailed feedback,

but triggers unnecessary retransmission upon losses

advantages

know fate of each packet

simple window algorithm

W single-packet algorithms

not sensitive to reordering

disadvantages

loss of an ACK packet

requires a retransmission

causes unnecessary retransmission

advantages

disadvantages

ACK the highest sequence number for which

recover from lost ACKs

confused by reordering

incomplete information about which packets have arrived

all the previous packets have been received

approach

Cumulative ACKs enables to recover from lost ACKs,

but provides coarse-grained information to the sender

causes unnecessary retransmission

Full Information Feedback prevents unnecessary

retransmission, but can induce a sizable overhead

complete information

overhead

List all packets that have been received

highest cumulative ACK, plus any additional packets

approach

resilient form of individual ACKs

advantages

disadvantages

e.g., when large gaps between received packets

(hence lowering efficiency)

We see that Internet design is

all about balancing tradeoffs (again)

The efficiency of our protocol

essentially depends on two factors

receiver

feedback

behavior

upon losses

How does the sender

detect and react to losses?

As of now, we detect loss by using timers.

That’s only one way though

Losses can also be detected by relying on ACKs

sender can infer that 5 is missing

and resend 5 after k subsequent packets

With individual ACKs,

missing packets (gaps) are implicit

Assume packet 5 is lost

1ACK stream

2

3

4

6

7

…

but no other

sender learns that 5 is missing

retransmits after k packets

With full information,

missing packets (gaps) are explicit

Assume packet 5 is lost

up to 1ACK stream

up to 2

up to 3

up to 4

up to 4, plus 6

up to 4, plus 6—7

…

but no other

With cumulative ACKs,

missing packets are harder to know

Assume packet 5 is lost

1ACK stream

2

3

4

4 sent when 6 arrives

4 sent when 7 arrives

…

but no other

but what do you resend?

only 5 or 5 and everything after?

Duplicated ACKs are a sign of isolated losses.

Dealing with them is trickier though.

Stream of ACKs means that (some) packets are delivered

Lack of ACK progress means that 5 hasn’t made it

Sender could trigger resend

situation

upon receiving k duplicates ACKs

lostpackets can get

corrupted

reordered

delayed

duplicated

Design a correct, timely, efficient and fair transport mechanism

knowing that

What about fairness?

When n entities are using our transport mechanism,

we want a fair allocation of the available bandwidth

A B
1Gbps

C
1Gbps

Consider this simple network

in which three hosts are sharing two links

What is a fair allocation for the 3 flows?

flow 1

flow 2

flow 3

A B
1Gbps

C
1Gbps

flow 1

flow 2

flow 3

500 Mbps

500 Mbps

500 Mbps

An equal allocation is certainly “fair”,

but what about the efficiency of the network?

Total traffic is 1.5 Gbps

A B
1Gbps

C
1Gbps

flow 1

flow 2

flow 3

1 Gbps

1 Gbps

0 Mbps

Fairness and efficiency don’t always play along,

here an unfair allocation ends up more efficient

Total traffic is 2 Gbps!

What is fair anyway?

Equal-per-flow isn’t really fair as (A,C) crosses two links:

it uses more resources

A B
1Gbps

C
1Gbps

flow 1

flow 2

flow 3

500 Mbps

500 Mbps

500 Mbps

Total traffic is 1.5 Gbps

With equal-per-flow, A ends up with 1 Gbps because it

sends 2 flows, while B ends up with 500 Mbps

Is it fair?

Seeking an exact notion of fairness is not productive.

What matters is to avoid starvation.

equal-per-flow is good enough for this

A B
1Gbps

C
10 Gbps

flow 1

flow 2

flow 3

Simply dividing the available bandwidth doesn’t work

in practice since flows can see different bottleneck

(A,B)

(B,C)

(A,B)

bottleneck link

Intuitively, we want to give users with "small" demands

what they want, and evenly distribute the rest

Max-min fair allocation is such that

the lowest demand is maximized

after the lowest demand has been satisfied,

the second lowest demand is maximized

after the second lowest demand has been satisfied,

the third lowest demand is maximized

and so on…

Start with all flows at rate 0

Done!

step 1

Increase the flows until there is

a new bottleneck in the network

Hold the fixed rate of the flows

that are bottlenecked

step 2

step 3

Go to step 2 for the remaining flowsstep 4

Max-min fair allocation can easily be computed

Max-min fair allocation can be approximated

by slowly increasing W until a loss is detected

Progressively increase

the sending window size

Intuition

Whenever a loss is detected,

decrease the window size

Repeat

signal of congestion

max=receiving window

lostpackets can get

corrupted

reordered

delayed

duplicated

Design a correct, timely, efficient and fair transport mechanism

knowing that

Dealing with corruption is easy:

Rely on a checksum, treat corrupted packets as lost

The effect of reordering depends on

the type of ACKing mechanism used

individual ACKs

full feedback

cumm. ACKs

no problem

no problem

create duplicate ACKs

why is it a problem?

Long delays can create useless timeouts,

for all designs

Packets duplicates can lead to duplicate ACKs whose

effects will depend on the ACKing mechanism used

individual ACKs

full feedback

cumm. ACKs

no problem

no problem

problematic

lostpackets can get

corrupted

reordered

delayed

duplicated

Design a correct, timely, efficient and fair transport mechanism

knowing that

Here is one correct, timely, efficient and fair

transport mechanism

retransmission

full information ACK

after timeout

ACKing

after k subsequent ACKs

window management additive increase upon successful delivery

multiple decrease when timeouts

We'll come back to this when we see TCP

Reliable Transport

if-and-only if again

Correctness condition

Design space

Examples

Go-Back-N & Selective Repeat

3

timeliness vs efficiency vs …

Go-Back-N (GBN) is a simple sliding window protocol

using cumulative ACKs

receiver should be as simple as possibleprinciple

delivers packets in-order to the upper layerreceiver

for each received segment,

ACK the last in-order packet delivered (cumulative)

upon timeout, resend all W packets

starting with the lost one

sender use a single timer to detect loss, reset at each new ACK

Selective Repeat (SR) avoid unnecessary retransmissions

by using per-packet ACKs

avoids unnecessary retransmissionsprinciple

acknowledge each packet, in-order or notreceiver

buffer out-of-order packets

upon loss, only resend the lost packet

sender use per-packet timer to detect loss

see Book 3.4.3

Let’s see how it works in practice

visually

http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/

timeliness vs efficiency vs …

Reliable Transport

if-and-only if again

Correctness condition

Design space

Examples

Go-Back-N & Selective Repeat

Next week on Communication Networks

Ethernet and Switching

Source: Andrew Hart (Flickr)

Communication Networks

Spring 2020

ETH Zürich (D-ITET)

Laurent Vanbever

March 2 2020

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

