Communication Networks Spring 2019

Alexander Dietmüller, TA comm-net.ethz.ch

ETH Zürich May 2, 2019

Next Week on Communication Networks

Reliable Transport Project

Go-Back-N is a reliable transport protocol using a **sender window**, **ACKs** and **timeout**.

Go-Back-N is a reliable transport protocol using a **sender window**, **ACKs** and **timeout**.

The **receiver** typically uses **cumulative acknowledgements**.

X is the **next expected segment** every segment **up to X is ACKed**

GBN waits for a timeout before segments are retransmitted.

Retransmission:

GBN waits for a timeout before segments are retransmitted.

Let's see how it works in practice visually.

www.ccs-labs.org/teaching/rn/animations/gbn_sr/

Retransmitting the whole window is wasteful. How can we do better?

Selective Repeat does not wait for timeout and can increase performance.

Sent segments:	0 1	2 3	4	5	
Receiver behavior:	0 –	2 3	8 4	5	Out–of–order segments are buffered at the rece
Sent ACKs:	1 –	1 1	1	1	

Retransmission:

Selective Repeat does not wait for timeout and can increase performance.

Retransmission:

No timeout (yet). When should we retransmit?

Selective Repeat does not wait for timeout and can increase performance.

	Full ACK infoDuplicate ACKs				^F o CKs	(cc (si	(complex) (simple)		
Retransmission:	Nc	o tim	eou	t (ye	et). V	Wher	n should we retransmit?		
Sent ACKs:	1	_	1	1	1	1			
Receiver behavior:	0	_	2	3	4	5	Out–of–order segments are buffered at the receiver		
Sent segments:	0		2	3	4	5			

Fast Retransmit is based on duplicate ACKs.

Fast Retransmit is based on duplicate ACKs

3 duplicate ACKs

This Weeks Exercise

GBN and DNS

The first part of the exercise is all about Go-Back-N.

First

Warm-up questions (8.1) prepare you for the following question (8.2). Discuss with your classmates!

Second

8.2 is an exam question from 2017. Read the instructions carefully!

The last three questions encourage you to have a look at DNS responses.

8.3 Hierarchy	DNS is organized com org net edu gov mil be ch de fr into hierarchical zones. How are they connected?
8.4 Caching	The load on authoritative DNS servers is reduced by caching on local DNS servers. <i>How is this cache managed?</i>
8.5 One Query, Many Responses	DNS can return multiple IP addresses. Why is this useful?

root

The last three questions encourage you to have a look at DNS responses.

Unix

dig ethz.ch

Windows

nslookup ethz.ch
nslookup -debug ethz.ch

provides more information