
Communication Networks
Prof. Laurent Vanbever

Solution: Exercise 11 – Programmable Networks

11.1 Network Virtualization with OpenFlow

ETH network

http(s) email other

(Fictional) ETH network with three OpenFlow controllers.

OpenFlow simplifies network virtualization, i.e. managing

different parts of your network or traffic separately.

Assume that ETH has installed OpenFlow Switches and

wants to benefit from network virtualization. Let there be

three teams: One responsible for web-traffic, i.e. HTTP(s),

one for emails, and one for everything else. Each team

operates their own OpenFlow Controller.

As you have learned, if an OpenFlow switch does not

know what to do with a packet, it forwards the packet

to the controller. However, it is also possible to install

an explicit matching rule to send packets to a controller,

which we want to use for network virtualization.

Use the following pseudo-code command to install such a

matching rule (and remember that all OpenFlow matching

rules are ordered by the priority you assign to them):

send_to_controller(match, priority, controller)

where controller can simply be web, email, or other and

you can use the following syntax for matches:

{src=42.0.0.*, dst=*}

You may use any fields you need, and use * as a wildcard.

• Use pseudo-code to install matching rules for for-

warding packets the correct controller. In particu-

lar, consider which fields you have to match on, and

which priority you set. Note: You can (and have to)

use send_to_controller multiple times.

• How does the priority you choose influence other

OpenFlow rules installed by the controllers?



Solution: Both HTTP(s) traffic and emails can be identi-

fied by their TCP destination ports. In particular, the ETH

mailserver uses ports 993 and 995 for incoming- and port

587 for outgoing mails.a

send_to_controller({dport=443}, 5, web)

send_to_controller({dport=80}, 4, web)

send_to_controller({dport=993}, 3, email)

send_to_controller({dport=995}, 2, email)

send_to_controller({dport=587}, 1, email)

send_to_controller(*, 0, other)

It is important that the matching rule for the other con-

troller has a lower priority than the rules for controllers

for more specific traffic, otherwise it would receive all

packets. Aside from the matching rule for the other con-

troller, The rules to not necessarily require distinct pri-

orities – since they cannot match at the same time, they

could all use the same priority.

Furthermore, the controllers must be aware of the pri-

ority of the send_to_controller matching rules and

use higher priority for their own rules to work, as the

send_to_controller would take precedence otherwise.

ahttps://www.isg.inf.ethz.ch/Main/HelpMailClientSetup



11.2 Flexible OpenFlow Switches

192.168.0.5:2013

242.121.0.6:3001

An OpenFlow switch can emulate different devices.

With the capabilities to match on-, and modify (some)

header fields, and either forwarding or dropping the

packet, OpenFlow switches can emulate various hard-

ware. In this exercise, we compare NAT and firewalls.

First, consider matching (for simplicity, only look at TCP

and UDP traffic):

• Which header fields does the switch need to match

as a NAT, or as a firewall? Are there differences?

Solution: Both applications need to identify flows, which

can be identified by source- and destination addresse,

protocol (udp or tcp), source- and destination port. This

is sufficient for both applications.

Next, assume the switch has matched on a packet and

sent it to the controller. On the controller, for NAT and

firewall respectively:

• Which decisions need to be made?

• Which data needs to be stored?

• Is any external information required or useful?

• Which rules need to be installed on the switch?

Solution: For a NAT, the controller needs to store a

lookup table, to avoid assigning the same port twice. For

each incoming packet, the controller needs to decide on a

port on the OpenFlow Switch and install rules to translate

address and port (in both directions).

For a firewall, the controller must take external informa-

tion into account, such as blacklists, in order to decide

which traffic is benign and which malicious. Then, rules

need to be installed to either forward or drop the traffic.

Finally, with an OpenFlow switch, we do not need to de-

cide between NAT and firewall, as our switch can be both

at the same time. However, this is not without challenges.

• What difficulties arise when combining multiple

goals, such as address translation and filtering?

Solution: If both NAT and firewall apply to the same

traffic, they overwrite each other. Rules must be carefully

combined by hand, such that both actions for NAT and

firewall are applied, and not just one of them.



11.3 Programmable Dataplanes

P4 offers a programmable processing pipeline.

In OpenFlow, only the controller is programmable. While

an OpenFlow switch provides an API such that different

controllers can interact with it, the actual matching and

actions are fixed hardware functions.

The Protocol Independent Switch Architecute (PISA) along

with the domain specified programming language P4 are

a natural next step in programmability, as they allow to

program the switch itself, i.e. the packet parsing as well

as modifications to the packet.

What led to this development? Why are fixed switch func-

tions not enough?

Solution: OpenFlow has a hard time with new proto-

cols, as it does not understand how to parse the header

fields. Without this information, matching or modifying

anything becomes impossible. each additional protocol

requires hardware updates, which is inflexible, in partic-

ular to try out new protocols. Furthermore, this lead to

a fractured landscape of OpenFlow switches, where each

switch supports a different subset of all protocols.

PISA and P4 allow to program how to interpret packets,

which make the network hardware re-usable for different

protocols. Thus, each switch can be programmed on de-

mand exactly for the protocols it needs to understand.

Additonally, operators can also program their ‘own’ pro-

tocols, such as experimental protocols for research.


