
Communication Networks
Prof. Laurent Vanbever

Exercise 11 – Programmable Networks

11.1 Network Virtualization with OpenFlow

ETH network

http(s) email other

(Fictional) ETH network with three OpenFlow controllers.

OpenFlow simplifies network virtualization, i.e. managing

different parts of your network or traffic separately.

Assume that ETH has installed OpenFlow Switches and

wants to benefit from network virtualization. Let there be

three teams: One responsible for web-traffic, i.e. HTTP(s),

one for emails, and one for everything else. Each team

operates their own OpenFlow Controller.

As you have learned, if an OpenFlow switch does not

know what to do with a packet, it forwards the packet

to the controller. However, it is also possible to install

an explicit matching rule to send packets to a controller,

which we want to use for network virtualization.

Use the following pseudo-code command to install such a

matching rule (and remember that all OpenFlow matching

rules are ordered by the priority you assign to them):

send_to_controller(match, priority, controller)

where controller can simply be web, email, or other and

you can use the following syntax for matches:

{src=42.0.0.*, dst=*}

You may use any fields you need, and use * as a wildcard.

• Use pseudo-code to install matching rules for for-

warding packets the correct controller. In particu-

lar, consider which fields you have to match on, and

which priority you set. Note: You can (and have to)

use send_to_controller multiple times.

• How does the priority you choose influence other

OpenFlow rules installed by the controllers?



11.2 Flexible OpenFlow Switches

192.168.0.5:2013

242.121.0.6:3001

An OpenFlow switch can emulate different devices.

With the capabilities to match on-, and modify (some)

header fields, and either forwarding or dropping the

packet, OpenFlow switches can emulate various hard-

ware. In this exercise, we compare NAT and firewalls.

First, consider matching (for simplicity, only look at TCP

and UDP traffic):

• Which header fields does the switch need to match

as a NAT, or as a firewall? Are there differences?

Next, assume the switch has matched on a packet and

sent it to the controller. On the controller, for NAT and

firewall respectively:

• Which decisions need to be made?

• Which data needs to be stored?

• Is any external information required or useful?

• Which rules need to be installed on the switch?

Finally, with an OpenFlow switch, we do not need to de-

cide between NAT and firewall, as our switch can be both

at the same time. However, this is not without challenges.

• What difficulties arise when combining multiple

goals, such as address translation and filtering?

11.3 Programmable Dataplanes

P4 offers a programmable processing pipeline.

In OpenFlow, only the controller is programmable. While

an OpenFlow switch provides an API such that different

controllers can interact with it, the actual matching and

actions are fixed hardware functions.

The Protocol Independent Switch Architecute (PISA) along

with the domain specified programming language P4 are

a natural next step in programmability, as they allow to

program the switch itself, i.e. the packet parsing as well

as modifications to the packet.

What led to this development? Why are fixed switch func-

tions not enough?


