
Communication Networks

Spring 2019

ETH Zürich (D-ITET)

Laurent Vanbever

May 13 2019

Materials inspired from Olivier Bonaventure (University of Louvain)

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

Last week on

Communication Networks

2nd projectE-mail

MX, SMTP, POP, IMAP Introduction

Retrieval
Infrastructure/
Transmission

Content

Format: Header/Content

Encoding: MIME

SMTP: Simple Mail

Infrastructure
mail servers

POP: Post O!ce Protocol

IMAP:Internet Message
Access Protocol

Transfer Protocol

We'll study e-mail from three di#erent perspectives

Retrieval
Infrastructure/
Transmission

Content

Format: Header/Content

Encoding: MIME

A header, in 7-bit U.S. ASCII text

Header To:

From:

Subject:

Laurent Vanbever <lvanbever@ethz.ch>

Tobias Buehler <buehlert@ethz.ch>

[comm-net] Exam questions

mailto:buehlert@ethz.ch

Body

A body, also in 7-bit U.S. ASCII text

To:

From:

Subject:

Hi Tobias,

Here are some interesting questions…

Best,

Laurent

Laurent Vanbever <lvanbever@ethz.ch>

Tobias Buehler <buehlert@ethz.ch>

[comm-net] Exam questions

mailto:buehlert@ethz.ch

Email relies on 7-bit U.S. ASCII… 
How do you send non-English text? Binary files?

Multipurpose Internet Mail Extensions

commonly known as MIME, standardized in RFC 822

Solution

Retrieval
Infrastructure/
Transmission

Content

SMTP: Simple Mail

Infrastructure
mail servers

Transfer Protocol

@

local mailbox

lvanbever

domain name

actual mail server is identified using
a DNS query asking for MX records

ethz.ch

An e-mail address is composed of two parts
identifying the local mailbox and the domain

Simple Mail Transfer Protocol (SMTP) is
the current standard for transmitting e-mails

SMTP uses reliable data transfer

built on top of TCP (port 25 and 465 for SSL/TLS)

SMTP is a text-based, client-server protocol

client sends the e-mail, server receives it

SMTP is a push-like protocol

sender pushes the file to the receiving server (no pull)

MSA/MTA/MDA MSA/MTA/MDA

MUA/MRA MUA/MRA

SMTP

The sender MUA uses SMTP to transmit the e-mail first
to a local MTA (e.g. mail.ethz.ch, gmail.com, hotmail.com)

http://mail.ethz.ch
http://gmail.com
http://hotmail.com

MSA/MTA/MDA MSA/MTA/MDA

MUA/MRA MUA/MRA

SMTP

The local MTA then looks up the MTA of the recipient
domain (DNS MX) and transmits the e-mail further

SMTP

Once the e-mail is stored at the recipient domain,
IMAP or POP is used to retrieve it by the recipient MUA

MSA/MTA/MDA MSA/MTA/MDA

MUA/MRA

IMAP or POP

MUA/MRA

SMTP

SMTP

Retrieval
Infrastructure/
Transmission

Content

POP: Post O!ce Protocol

IMAP:Internet Message
Access Protocol

This week on

Communication Networks

programmable
networks

IPv6

next generation of
Internet addressing

next generation of

network devices

programmable
networks

IPv6

next generation of
Internet addressing

The long way from…

World population: 7.5 billion

~0.6 IPv4 addresses per person

Average # of atoms in a human: 6.1027

…to…

~7.5 IPv6 addresses per "human" atom

First, let's look at some history

1992 Most class B networks have been assigned

Introduction of classless IPv4 addresses

experts warn that IPv4 addresses might run out

1993

1994 "Address Allocation for Private Internets"

3 reserved IPv4 blocks for private networks

Hosts in private IP space are unreachable from Internet

late 1980s Exponential growth of the Internet

IPv6 originally appeared in 1998

i.e. more than 20 years ago

It is possible to resolve domain names using IPv6 only2008

2005 Estimated timeframe for massive adaption of IPv6

Did not happen…

IETF standardization of the IPv6 draft1998

1994 (cont’d) "IP Network Address Translator (NAT)"

A public address is mapped to an entire private IP space

Support for mobile devices varies

Last unassigned top-level IPv4 block is distributed2011

All major operating systems have stable IPv6 support

2018 >20% of Google traffic is on IPv6

with wide differences across countries

A large number of content and ISPs

2012 World IPv6 Launch day

permanently enable IPv6

… and is now finally picking up steam

Almost of third of the requests seen by Google

are done using IPv6

https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption

https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption

Not all countries are equivalent though

The darker the green,  
the larger the deployment

https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption

top country: Belgium

(53% deployment)

https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption

Thus far IPv4 has been very persistent,

and that's quite understandable

Most of IPv6 new features were back-ported to IPv4

No obvious advantage in using IPv6

Deploying IPv6 require every device to support it

All routers, middleboxes, end hosts, applications, …

Network Address Translation is working well

The pain of address depletion is not obvious

Network Address Translation (NAT)

One of the main reasons why we can still use IPv4

Saved us from address depletion

Sharing a single (public) address between hosts

Port numbers (transport layer) are used to distinguish

Violates the general end-to-end principle of the Internet

A NAT box adds a layer of indirection

Internet

The Internet before NAT

Every machine connected to the Internet had a unique IP

R

Local Network

1.2.3.0/24

1.2.3.4

1.2.3.5

Server

5.6.7.8

port 80
R

IP:port

src

dst

1.2.3.4:2001

5.6.7.8:80
5.6.7.8:80

1.2.3.4:2001

Internet

The Internet with NAT

Hosts behind NAT get a private address

Local Network

192.168.0.0/16

192.168.3.4

192.168.3.5

Server

5.6.7.8

port 80
R

9.10.11.12

NAT / R

192.168.3.4:3001 9.10.11.12:5000

IP:port

src

dst

192.168.3.4:3001

5.6.7.8:809.10.11.12:5000

5.6.7.8:80
5.6.7.8:80

9.10.11.12:5000

5.6.7.8:80

192.168.3.4:3001

NAT

table

Internet

The Internet with NAT

The port numbers are used to multiplex single addresses

Local Network

192.168.0.0/16

192.168.3.4

192.168.3.5

Server

5.6.7.8

port 80
R

9.10.11.12

NAT / R

192.168.3.4:3001 9.10.11.12:5000

192.168.3.5:4001

5.6.7.8:80

9.10.11.12:5001

5.6.7.8:80

5.6.7.8:80

192.168.3.5:4001

NAT

table 192.168.3.5:4001 9.10.11.12:5001

5.6.7.8:80

9.10.11.12:5001

NAT also provides other (dis-)advantages

Better security

From the outside you cannot directly reach the hosts

Better privacy/anonymization

All hosts in one network get the same public IP

Limited scalability (size of the mapping table)

Example: Wi-Fi access problems in public places

But, cookies, browser version, … still identify hosts

Problematic e.g., for online gaming

(e.g., lecture hall) often due to a full NAT table

Let's talk about IPv6

IPv6 addresses are encoded in 128 bits

Notation 8 groups of 16 bits each separated by colons (:)

Each group is written as four hexadecimal digits

Simplification Leading zeros in any group are removed

One section of zeros is replaced by a double colon (::)

Normally the longest section

Examples 1080:0:0:0:8:800:200C:417A 1080::8:800:200C:417A

FF01:0:0:0:0:0:0:0101 FF01::101

0:0:0:0:0:0:0:1 ::1

There are three types of IPv6 addresses:

unicast, anycast, and multicast

Unicast Identifies a single interface

Packets are delivered to this specific interface

Anycast Identifies a set of interfaces

Packets are delivered to the "nearest" interface

Multicast Identifies a set of interfaces

Packets are delivered to all interfaces

Unicast Identifies a single interface

Packets are delivered to this specific interface

similar to global IPv4 addresses

Global unicast addresses

are hierarchically allocated

128 bits

N bits M bits 128-N-M bits

global routing prefix subnet ID Interface ID

Identifies the ISP responsible 
for the address

A subnet in this ISP or  
a customer of the ISP

Usually 64 bits

Based on the MAC address

Allocation of IPv6 (global unicast) addresses

Currently, only 2000::/3 is used for global unicast

All addresses are in the range of 2000 to 3FFF

The Internet Assigned Numbers Authority (IANA)

assigns blocks to Regional IP address Registries (RIR)

For example RIPE, ARIN, APNIC, …

same as private IPv4 addresses

Link-local addresses are unique

to a single link (subnet)

128 bits

10 bits 54 bits 64 bits

FE80 0000…0000 Interface ID

Each host/router must generate a link-local

address for each of its interfaces

An interface therefore can have multiple IPv6 addresses

In addition to global and link-local addresses,

some IPv6 unicast addresses have a special meaning

0:0:0:0:0:0:0:0

Used as src address if no IPv6 address available

Loopback address 0:0:0:0:0:0:0:1

127.0.0.1 for IPv4 addresses

IPv4 embedded The lowest 32 bits contains an IPv4 address

useful when deploying IPv6

Unspecified address

::1

Important There are no IPv6 broadcast addresses

Anycast Identifies a set of interfaces

Packets are delivered to the „nearest“ interface

IPv6 anycast addresses

Anycast use the global unicast address range

E.g. for DNS or HTTP services

Multiple interfaces with the same address

Packets are sent to the nearest interface

IPv6 anycast is rarely used

Multicast Identifies a set of interfaces

Packets are delivered to all interfaces

Multicast addresses identify

a group of receivers/interfaces

0: permanent/predefined

1: temporary/transient

Examples:

2: link-local

E: global

Identifies the group of devices

128 bits

8 bits 4 bits 112 bits

11111111 Group IDflags scope

4 bits

Some multicast addresses are well-known and  
used for auto-discovery, bootstraping, etc.

FF02::1 All IPv6 end-systems

E.g. hosts, servers, routers, mobile devices, …

FF02::2 All IPv6 routers

All routers automatically belong to this group

The IPv6 packet header format

32 bits

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source IPv6 address

Destination IPv6 address

Unclear

utilisation

Same as TTL

in IPv4

Indicates type

of next header.

E.g. TCP/UDP

or extension

header

Version = 6

Same as

DSCP

Size of packet

content in bytes

Compared to IPv4,

IPv6 does…

not support fragmentation

End host is required to send small enough packets

not include checksums in the packet header

link, transport or application layer provide checksums

provide more flexibility

flow labels and extension headers

Extension header example: ICMPv6

Version Traffic Class Flow Label

Payload Length 58 - ICMPv6 Hop Limit

Source IPv6 address

Source IPv6 address

Type Code

Message Body

Checksum

Similar functions than IPv4 ICMP

Extension

header

The next header

field indicates

the type of the

extension header

replacement for IPv4’s ARP

ICMPv6 can be used for

neighbor discovery

First step: neighbor solicitation

IPv6 address

for which we

need the

link-layer

address Target IPv6 address

Reserved

Type:135 Code:0 Checksum

Second step: neighbor advertisement

Is a router?

Target IPv6 address

Reserved

Type:136 Code:0 Checksum

Target link layer address

R S O

Answer to  
neighbor 
solicitation?

Requested

link-layer

address

ICMPv6 can be used for

neighbor discovery

How can a node obtain its IPv6 address(es)?

From a server by using DHCPv6

Similar to the IPv4 version

Manual configuration

As in the project, e.g. with ifconfig

Automatically

Using its link-local address and neighbor discovery

IPv6 autoconfiguration

to find link-local address

Ethernet (MAC): 0800:200C:417A

Link-local: FE80::M64(800:200C:417A)

Consider an end-system which has just started,

it needs an IPv6 address to send ICMPv6 messages

Neighbor solicitation for FE80::M64(800:200C:417A)

If no answer, the created link-local address is valid

M64: 64-bit representation of the MAC address

IPv6 autoconfiguration

to obtain the IPv6 prefix of subnet

The advertisements can contain:

IPv6 prefix and length

Routers periodically advertise the prefix

Sent to all end-systems: FF02::1

Network MTU to use

Maximum hop limit to use

Lifetime of the default router

How long generated addresses are preferred

contains MAC address of host

IPv6 autoconfiguration

to build global unicast address

Prefix: 2001:6a8:3080:1::/64

Ethernet (MAC): 0800:200C:417A

Global unicast:

2001:6a8:3080:1:M64(800:200C:417A)

To port your IPv4-based application to IPv6,

you need to…

adapt all data structures to support IPv6 addresses

change the used socket functions

adjust user interface elements to display IPv6

adjust all logging functions

Today, a lot of applications and OSes

use a dual stack approach

Application

TCP UDP

IPv4 IPv6

Data Link (Ethernet)

Over the years, a lot of

transition mechanisms were developed

6in4

6to4

Teredo

SIIT

6rd

GRE

AYiYA

…

cannot cross NATs

TCP/UDP header

not available

Tunnel IPv6 packets over static IPv4 links (6in4)

Version: IPv4

Src/dst IPs: IPv4 addresses

Protocol: 41 (IPv6)

Version IPv6

Src/dst: IPv6 addresses

Protocol: 6 (TCP)

TCP header and ports

Application

IPv4

payload

IPv4

header

IPv6 @ home (Swisscom Internet access box)

You will be assigned an IPv4 and IPv6 address

programmable
networks

IPv6

next generation of

network devices

Networking is on the verge of a paradigm shift

towards deep programmability

Network programmability is attracting

tremendous industry interest (and money)

Networking Systems Security PL
Distributed  
Algorithms

SIGCOMM

NSDI

HotNets

CoNEXT

OSDI

SOSP

SOCC

PODC

DISC

PLDI

POPL

OOPSLA

CCS

NDSS

Usenix  
 Security

Network programmability is getting traction  
in many academic communities

S&P

of citations of the original

OpenFlow paper (*) in ~10 years

(*) https://dl.acm.org/citation.cfm?id=1355746

>7.7k

Why? It's really a story in 3 stages

Stage 1

The network management crisis

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Networks are large distributed systems

running a set of distributed algorithms

IP router

These algorithms produce the forwarding state

which drives IP traffic to its destination

Control plane

Data plane

Control plane

Data plane
Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

dest

Google

Yahoo!

ETHZ

0

… …

next-hop

… …
Skype

Forwarding state

1

0

2

0
1

2

Operators adapt their network forwarding behavior

by configuring each network device individually

Given

an existing network behavior

induced by a low-level configuration C

and

a desired network behavior

Adapt C so that the network follows the new behavior

Given

an existing network behavior

induced by a low-level configuration C

and

a desired network behavior

Adapt C so that the network follows the new behavior

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

Configuring each element is often done manually,

using arcane low-level, vendor-specific “languages”

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

	redistribute	bgp	700	subnets

A single mistyped line is enough

to bring down the entire network

Anything else than 700 creates blackholes

It's not only about the problem of configuring…

the level of complexity in networks is staggering

Mark Handley. Re-thinking the control architecture of the internet.  
Keynote talk. REARCH. December 2009.

Source

Complexity + Low-level Management = Problems

https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/

November 2017

For a little more than 90 minutes […],

Internet service for millions of users in the U.S.

and around the world slowed to a crawl.

The cause was yet another BGP routing leak,

a router misconfiguration directing Internet traffic

from its intended path to somewhere else.

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

August 2017

Someone in Google fat-thumbed a

Border Gateway Protocol (BGP) advertisement

and sent Japanese Internet traffic into a black hole.

The outage in Japan only lasted a couple of hours,

but was so severe that […] the country's

Internal Affairs and Communications ministries

want carriers to report on what went wrong.

the result of which was traffic from Japanese giants

like NTT and KDDI was sent to Google

on the expectation it would be treated as transit.

[…]

“Human factors are responsible

for 50% to 80% of network outages”

Juniper Networks, What’s Behind Network Downtime?, 2008

“Cost per network outage

can be as high as 750 000$”

Smart Management for Robust Carrier Network Health 
and Reduced TCO!, NANOG54, 2012

closed software

closed hardware

Cisco™ device

Solving this problem is hard because
network devices are completely locked down

Stage 2

Software-Defined Networking

What is SDN and how does it help?

• SDN is a new approach to networking
– Not about “architecture”: IP, TCP, etc.

– But about design of network control (routing, TE,…)

• SDN is predicated around two simple concepts
– Separates the control-plane from the data-plane

– Provides open API to directly access the data-plane

• While SDN doesn’t do much, it enables a lot

Rethinking the �Division of Labor�

Traditional Computer Networks

Data plane:
Packet

processing &
delivery

Forward, filter, buffer, mark,
rate-limit, and measure packets

Traditional Computer Networks

Track topology changes, compute
routes, install forwarding rules

Control plane:
Distributed algorithms,

establish state in devices

Software Defined Networking (SDN)

API to the data plane
(e.g., OpenFlow)

Logically-centralized control

Switches

Smart,
slow

Dumb,
fast

SDN advantages

• Simpler management
– No need to �invert� control-plane operations

• Faster pace of innovation
– Less dependence on vendors and standards

• Easier interoperability
– Compatibility only in �wire� protocols

• Simpler, cheaper equipment
– Minimal software

OpenFlow Networks

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow is an API
to a switch flow table

• Simple packet-handling rules
– Pattern: match packet header bits, i.e. flowspace
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* à drop
05. src = *.*.*.*, dest=3.4.*.* à forward(2)
01. src=10.1.2.3, dest=*.*.*.* à send to controller

src:1.2.1.1, dst:3.4.5.6
pkt

OpenFlow switches can emulate
different kinds of boxes

• Router
– Match: longest

destination IP prefix
– Action: forward out a

link
• Switch
– Match: destination MAC

address
– Action: forward or flood

• Firewall
– Match: IP addresses and

TCP/UDP port numbers
– Action: permit or deny

• NAT
– Match: IP address and

port
– Action: rewrite address

and port

Controller: Programmability

SDN/OpenFlow
controller

Receives events from switches
Topology changes,

Traffic statistics,
Arriving packets

Send commands to switches
(Un)install rules,
Query statistics,

Send packets

while (true):
read event e:
if e == switch up:

- update topology
- populates switch table

…

Receives events from switches
Topology changes,

Traffic statistics,
Arriving packets

Send commands to switches
(Un)install rules,
Query statistics,

Send packets

Controller: Programmability

Example OpenFlow Applications

• Dynamic access control
• Seamless mobility/migration
• Server load balancing
• Network virtualization
• Using multiple wireless access points
• Energy-efficient networking
• Adaptive traffic monitoring
• Denial-of-Service attack detection

E.g.: Dynamic Access Control

• Inspect first packet of a connection
• Consult the access control policy
• Install rules to block or route traffic

E.g.: Seamless Mobility/Migration

• See host send traffic at new location
• Modify rules to reroute the traffic

E.g.: Server Load Balancing
• Pre-install load-balancing policy
• Split traffic based on source IP

src=0*

src=1*

Challenges

Heterogeneous Switches

• Number of packet-handling rules
• Range of matches and actions
• Multi-stage pipeline of packet processing
• Offload some control-plane functionality (?)

access
control

MAC
look-up

IP
look-up

Controller Delay and Overhead

• Controller is much slower than the switch
• Processing packets leads to delay and overhead
• Need to keep most packets in the �fast path�

packets

Distributed Controller

Network OS

Controller
Application

Network OS

Controller
Application

For scalability
and reliability

Partition and replicate state

Testing and Debugging

• OpenFlow makes programming possible
– Network-wide view at controller
– Direct control over data plane

• Plenty of room for bugs
– Still a complex, distributed system

• Need for testing techniques
– Controller applications
– Controller and switches
– Rules installed in the switches

Programming Abstractions

• OpenFlow is a low-level API
– Thin veneer on the underlying hardware

• Makes network programming
possible, not easy!

Controller

Switches

Example: Simple Repeater

def switch_join(switch):
Repeat Port 1 to Port 2
p1 = {in_port:1}
a1 = [forward(2)]
install(switch, p1, DEFAULT, a1)

Repeat Port 2 to Port 1
p2 = {in_port:2}
a2 = [forward(1)]
install(switch, p2, DEFAULT, a2)

Simple Repeater

1 2

Controller

When a switch joins the network, install two forwarding rules.

Example: Web Traffic Monitor

def switch_join(switch):
Web traffic from Internet
p = {inport:2,tp_src:80}
install(switch, p, DEFAULT, [])
query_stats(switch, p)

def stats_in(switch, p, bytes, …)
print bytes
sleep(30)
query_stats(switch, p)

Monitor �port 80� traffic

1 2

Web traffic

When a switch joins the network, install one monitoring rule.

Composition: Repeater + Monitor

def switch_join(switch):
pat1 = {inport:1}
pat2 = {inport:2}
pat2web = {in_port:2, tp_src:80}
install(switch, pat1, DEFAULT, None, [forward(2)])
install(switch, pat2web, HIGH, None, [forward(1)])
install(switch, pat2, DEFAULT, None, [forward(1)])
query_stats(switch, pat2web)

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

Repeater + Monitor

Must think about both tasks at the same time.

Asynchrony: Switch-Controller Delays

• Common OpenFlow programming idiom
–First packet of a flow goes to the controller
–Controller installs rules to handle remaining packets

• What if more packets arrive before rules installed?
–Multiple packets of a flow reach the controller

• What if rules along a path installed out of order?
–Packets reach intermediate switch before rules do

Must think about all possible event orderings.

Controller

packets

Better: Increase the
level of abstraction

• Separate reading from writing
–Reading: specify queries on network state
–Writing: specify forwarding policies

• Compose multiple tasks
–Write each task once, and combine with others

• Prevent race conditions
–Automatically apply forwarding policy to extra packets

• See http://frenetic-lang.org/

http://frenetic-lang.org/

Stage 3

Deep Network Programability

Gee, Brain, did OpenFlow take over the world?

Well… no.

Pinky

The Brain

OpenFlow is not all roses

The specification itself keeps getting more complex

extra features make the software agent more complicated

The protocol is too complex (12 fields in OF 1.0 to 41 in 1.5)

switches must support complicated parsers and pipelines

Switches vendor end up implementing parts of the spec.

which breaks the abstraction of one API to rule-them-all

consequences

Enters… Protocol Independent Switch Architecture and P4

Enters… Protocol Independent Switch Architecture and P4

Parser Match-Action Pipeline Deparser

Protocol Independent Switch Architecture (PISA) for
high-speed programmable packet forwarding

Parser

Match-Action Pipeline

Deparser

Match-Action Pipeline

Ingress Egress

Switching logic
crossbar, shared bu#ers, …

A slightly more accurate architecture

Enters… Protocol Independent Switch Architecture and P4

By default,
PISA doesn't do anything, it's just an "architecture"

Parser

Match-Action Pipeline

Deparser

Match-Action Pipeline

Ingress Egress

Switching logic
crossbar, shared bu#ers, …

P4 is a domain-specific language which describes
how a PISA architecture should process packets

https://p4.org

Ethernet

IPv4

IPv6

Access Control

Compiler

Logical behavior

PISA backend

forward

drop

PISA + P4 is strictly more general OpenFlow

Programmable Data Planes:
The future of networking?

If you are interested, consider taking  
Advanced Topics in Communication Networks [adv-net.ethz.ch]

http://adv-net.ethz.ch

Communication Networks

Spring 2019

ETH Zürich (D-ITET)

Laurent Vanbever

May 13 2019

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

