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E-mail 2nd project

MX, SMTP, POP, IMAP Introduction



We'll study e-mail from three different perspectives

Infrastructure/ _
Content o Retrieval
Transmission

Format: SMTP: POP:
Encoding: IMAP:

Infrastructure



Infrastructure/ _
Content o Retrieval
Transmission

Format:

Encoding:



A header, in 7-bit U.S. ASCII text

From: Laurent Vanbever <lvanbever@ethz.ch>

Header To: Tobias Buehler <buehlert@ethz.ch>

Subject: [comm-net] Exam questions


mailto:buehlert@ethz.ch

A body, also in 7-bit U.S. ASCII text

From: Laurent Vanbever <lvanbever@ethz.ch>
To: Tobias Buehler <buehlert@ethz.ch>
Subject: [comm-net] Exam questions

Body Hi Tobias,

Here are some interesting questions...

Best,
Laurent


mailto:buehlert@ethz.ch

Email relies on 7-bit U.S. ASCII...
How do you send non-English text? Binary files?

Solution Multipurpose Internet Mail Extensions

commonly known as MIME, standardized in RFC 822



Infrastructure/ _
Content o Retrieval
Transmission

SMTP:

Infrastructure



An e-mail address is composed of two parts
identifying the local mailbox and the domain

lvanbever ethz.ch

l l

local mailbox domain name

mail server
MX records



Simple Mail Transfer Protocol (SMTP) is
the current standard for transmitting e-mails

SMTP is a text-based, client-server protocol

client sends the e-mail, server receives it

SMTP uses reliable data transfer

built on top of TCP (port 25 and 465 for SSL/TLS)

SMTP is a push-like protocol

sender pushes the file to the receiving server (no pull)



The sender MUA uses SMTP to transmit the e-mail first
to a local MTA

MSA/MTA /MDA MSA/MTA /MDA


http://mail.ethz.ch
http://gmail.com
http://hotmail.com

The local MTA then looks up the MTA of the recipient
domain (DNS MX) and transmits the e-mail further

MUA/MRA

MSA/MTA/MDA MSA/MTA /MDA



Once the e-mail is stored at the recipient domain,
IMAP or POP is used to retrieve it by the recipient MUA

IMAP or POP

MUA/MRA

MSA/MTA /MDA MSA/MTA /MDA



Infrastructure/ _
Content o Retrieval
Transmission

POP:
IMAP:
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Communication Networks



programmable

IPv6
networks

next generation of next generation of
Internet addressing network devices



programmable

IPvb
networks

next generation of
Internet addressing



The long way from...

World population: 7.5 billion

~0.6 IPv4 addresses per person



..10...

Average # of atoms in a human: 6.1027

~7.5 IPv6 addresses per "human” atom



First, let's look at some history

late 1980s Exponential growth of the Internet

1992 Most class B networks have been assigned

experts warn that IPv4 addresses might run out
1993 Introduction of classless IPv4 addresses

1994 "Address Allocation for Private Internets"
3 reserved IPv4 blocks for private networks

Hosts in private IP space are unreachable from Internet



IPv6 originally appeared in 1998
i.e. more than 20 years ago

1994 (cont’d) "IP Network Address Translator (NAT)"

A public address is mapped to an entire private IP space

1998 IETF standardization of the IPv6 draft

2005 Estimated timeframe for massive adaption of IPv6

Did not happen...

2008 It is possible to resolve domain names using IPv6 only



... and is now finally picking up steam

2011 Last unassigned top-level IPv4 block is distributed
All major operating systems have stable IPv6 support

Support for mobile devices varies

2012 World IPv6 Launch day

A large number of content and ISPs

permanently enable IPv6

2018 >20% of Google traffic is on IPv6

with wide differences across countries



Almost of third of the requests seen by Google
are done using IPv6
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https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption


https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption

Not all countries are equivalent though

The darker the green,
the larger the deployment

top country: Belgium
(53% deployment)

https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption


https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption

Thus far IPv4 has been very persistent,
and that's quite understandable

Deploying IPv6 require every device to support it

All routers, middleboxes, end hosts, applications, ...

Most of IPv6 new features were back-ported to IPv4

No obvious advantage in using IPv6

Network Address Translation is working well

The pain of address depletion is not obvious



Network Address Translation (NAT)

Sharing a single (public) address between hosts

Port numbers (transport layer) are used to distinguish

One of the main reasons why we can still use IPv4

Saved us from address depletion

Violates the general end-to-end principle of the Internet

A NAT box adds a layer of indirection



The Internet before NAT

Every machine connected to the Internet had a unique IP

IP:port

src 1.2.3.4:2001

dst  5.6.7.8:80
5.6.7.8:80

1.2.3.4:2001

Server 1.2.3.4

—D Internet

5.6.7.8 R R 1.2.3.5
port 80

Local Network
1.2.3.0/24



The Internet with NAT

Hosts behind NAT get a private address

IP:port

src 192.168.3.4:3001
5.6.7.8:80 dst 5.6.7.8:80

>.6.7.8:80 192.168.3.4:3001
9.10.11.12:5000
Server -1 1= 192.168.3.4
—D Internet
5.6.7.8 R NAT /R 192.168.3.5
port 80

192.168.3.4:3001 «==» 9.10.11.12:5000
table Local Network

192.168.0.0/16



The Internet with NAT

The port numbers are used to multiplex single addresses

7 880 5.6.7.8:80
>.6.7.8: 192.168.3.5:4001
9.10.11.12:5001
Server L0 1112 192.168.3.4
—D Internet
5.6.7.8 R NAT / R 192.168.3.5
port 80

192.168.3.5:4001

5.6.7.8:80
NAT 192.168.3.4:3001 «=» 9.10.11.12:5000

|l ocal Network
table  192.168.3.5:4001 <= 9.10.11.12:5001

192.168.0.0/16



NAT also provides other (dis-)advantages

Better privacy/anonymization

All hosts in one network get the same public IP

But, cookies, browser version, ... still identify hosts

Better security

From the outside you cannot directly reach the hosts

Problematic e.g., for online gaming

Limited scalability (size of the mapping table)
Example: Wi-Fi access problems in public places

(e.g., lecture hall) often due to a full NAT table



Let's talk about IPv6



IPv6 addresses are encoded in 128 bits

Notation

Simplification

Examples

8 groups of 16 bits each separated by colons (:)

Each group is written as four hexadecimal digits

Leading zeros in any group are removed

One section of zeros is replaced by a double colon (::)

Normally the longest section

1080:0:0:0:8:800:200C:417A — 1080::8:800:200C:417A
FFO1:0:0:0:0:0:0:0101 —> FFOT1::101
0:0:0:0:0:0:0:1 — ]



There are three types of IPv6 addresses:
unicast, anycast, and multicast

Unicast Identifies a single interface

Packets are delivered to this specific interface

Anycast Identifies a set of interfaces

Packets are delivered to the "nearest” interface

Multicast Identifies a set of interfaces

Packets are delivered to all interfaces



Unicast Identifies a single interface

Packets are delivered to this specific interface



Global unicast addresses

are hierarchically allocated

similar to global IPv4 addresses

128 bits

N bits

M bits

128-N-M bits

> <

global routing prefix

subnet ID

Interface ID

'

Identifies the ISP responsible

for the address

A subnet in this ISP or

\4

a customer of the ISP

'

Usually 64 bits
Based on the MAC address




Allocation of IPv6 (global unicast) addresses

4/

&

Internet Assigned Numbers Authority

The Internet Assigned Numbers Authority (IANA)
assigns blocks to Regional IP address Registries (RIR)
For example RIPE, ARIN, APNIC, ...

Currently, only 2000::/3 is used for global unicast
All addresses are in the range of 2000 to 3FFF



Link-local addresses are unique
to a single link (subnet)

same as private IPv4 addresses

128 bits

10 bits 54 bits 64 bits

FESO 0000...0000 Interface ID

Each host/router must generate a link-local
address for each of its interfaces

An interface therefore can have multiple IPv6 addresses



In addition to global and link-local addresses,
some IPv6 unicast addresses have a special meaning

Unspecified address

Loopback address

IPv4 embedded

Important

0:0:0:0:0:0:0:0

Used as src address if no IPv6 address available

0:0:0:0:0:0:0:1 —™ ::1
127.0.0.1 for IPv4 addresses

The lowest 32 bits contains an IPv4 address

useful when deploying IPv6

There are no IPv6 broadcast addresses



Anycast Identifies a set of interfaces

Packets are delivered to the ,nearest” interface



IPv6 anycast addresses

Multiple interfaces with the same address

Packets are sent to the nearest interface

Anycast use the global unicast address range
E.g. for DNS or HTTP services

IPv6 anycast is rarely used



Multicast Identifies a set of interfaces

Packets are delivered to all interfaces



Multicast addresses identify
a group of receivers/interfaces

128 bits
<
8 bits 4 bits 4 bits 112 bits
< >< ><¢ ><¢
TTT11111 flags scope Group ID
M \ 4
0: permanent/predefined
P /P _ Identifies the group of devices
1: temporary/transient
\
Examples:
2: link-local

E: global



Some multicast addresses are well-known and
used for auto-discovery, bootstraping, etc.

FFO2::1 All IPv6 end-systems

E.g. hosts, servers, routers, mobile devices, ...

FFO2::2 All IPv6 routers

All routers automatically belong to this group



The IPv6 packet header format

32 bits
Same as < > Unclear
DSCP < // utilisation
/ Version | Traffic Class Flow Label
. . Same as TTL
Version = 6 Payload Length Next Header | Hop Limit |— _
\ In IPv4
| Source IPv6 address
Size of packet . Indicates type
content in bytes of next header.
E.g. TCP/UDP
or extension
header
Destination IPv6 address




Compared to IPv4,
IPv6 does...

not include checksums in the packet header

link, transport or application layer provide checksums

not support fragmentation

End host is required to send small enough packets

provide more flexibility

flow labels and extension headers



Extension header example: ICMPv6

Similar functions than IPv4 ICMP

Version | Traffic Class Flow Label

Payload Length >8 - ICMPvE | Hop Limit| o oot header

\$ field indicates

the type of the
extension header

Source IPv6 address

Source IPv6 address

Checksum
Extension

header

Message Body




ICMPV6 can be used for
neighbor discovery

replacement for IPv4’s ARP

First step: neighbor solicitation

Type:135

Code:0

Checksum

IPv6 address

Reserved

for which we

need the —
link-layer

address

\

Target IPv6 address




ICMPV6 can be used for

neighbor discovery

Second step: neighbor advertisement

Is a router?

Code:0

Checksum

/

Answer to

\Type:l 36
7R/LS O

Reserved

Target IPv6 address

Requested

neighbor
solicitation?

Target link layer address

_—

| link-layer
address




How can a node obtain its IPv6 address(es)?

Manual configuration

As in the project, e.g. with ifconfig

From a server by using DHCPv6

Similar to the IPv4 version

Automatically

Using its link-local address and neighbor discovery



IPv6 autoconfiguration
to find link-local address

Consider an end-system which has just started,

it needs an IPv6 address to send ICMPv6 messages

Ethernet (MAC): 0800:200C:417A
Link-local: FE80::Me4(800:200C:417A)
Mes: 64-bit representation of the MAC address

Neighbor solicitation for FE80::Ms4(800:200C:417A)

If no answer, the created link-local address is valid



IPv6 autoconfiguration
to obtain the IPv6 prefix of subnet

Routers periodically advertise the prefix

Sent to all end-systems: FFO2::1

The advertisements can contain:
IPv6 prefix and length

Network MTU to use

Maximum hop limit to use
Lifetime of the default router

How long generated addresses are preferred



IPv6 autoconfiguration
to build global unicast address

Ethernet (MAC): 0800:200C:417A

Prefix: 2001:6a8:3080:1::/64

Global unicast:
2001:6a8:3080:1:M64(800:200C:417A)

contains MAC address of host



To port your IPv4-based application to IPv6,
you need to...

change the used socket functions
adjust all logging functions
adapt all data structures to support IPv6 addresses

adjust user interface elements to display IPv6



Today, a lot of applications and OSes

use a dual stack approach

Application

I

TCP

|

UDP

=

IPv4

|Pv6

~,

Data Link (Ethernet)




Over the years, a lot of
transition mechanisms were developed

6in4
6to4
Teredo
SIHT
6rd
GRE
AYiYA



Tunnel IPv6 packets over static IPv4 links (6in4)

Application
cannot cross NATs
TCP header and ports TCP/UDP header
|P|V4 y not available
pevios Version [Pv6
Src/dst: IPv6 addresses
Protocol: 6 (TCP)
Py Version: [Pv4
header Src/dst IPs: IPv4 addresses
Protocol: 41 (IPv6)




IPv6 @ home (Swisscom Internet access box)

Ubersicht Netzwerkeinstellungen verwalten

Netzwerk

@ >

, IP-Einstellungen Portweiterleitung DynDNS IPv6 Statische Routen
Einstellungen

Gerateliste

Speedtest Der Datenverkehr im Internet wiirde ohne IP-Adressen
nicht funktionieren. Die Anzahl der weltweiten
Verfligbarkeit von IP-Adressen ist allerdings beschrankt.

WLAN e . .
IPv6 ist die neue Version eines Protokolls, welches unter

Telefonie IPv6 aktivieren @ anderem das Format der IP-Adressen vorgibt. Mit dem

i

neuen Format von IPv6 werden IP-Adressen kiinftig

. langer - ihre Verfugbarkeit vervielfacht sich damit auf
Kinderschutz einen Schlag. Mit Swisscom konnen Sie bereits heute
von IPv6 profitieren, indem Sie es hier aktivieren.

@ F W

Internet-Box

You will be assigned an IPv4 and IPv6 address



programmable

IPvb
networks

next generation of
network devices



Networking is on the verge of a paradigm shift
towards deep programmability



Network programmability is attracting

tremendous industry interest (and money)

VMware Acquires Once-Secretive Start-
Up Nicira for $1.26 Billion

JULY 23, 2012 AT 1:25 PM PT W Tweet 8+ m Share @ Print

VMware, the software company

best known for its virtualization

technology that forms the

backbones of so-called cloud

computing today, said it will pay

$1.26 billion for Nicira, a I
networking start-up that has

sought to do to networks what

VMware has done to computers.

The news comes on the same day
that VMware was to report I l I ‘ I l a
quarterly earnings. And while I

don’t usually cover VMware’s

earnings, I may as well mention the results: The company reported revenue for the quarter
ended June rose to $1.12 billion, while earnings on a per-share basis were 68 cents.
Analysts had been expecting sales of $1.12 billion and earnings of 66 cents.

Nicira had been running in stealth mode for quite awhile; I got to reveal its plans to the
world last February.

The deal amounts to a nice payoff for Nicira’s investors including Andreessen Horowitz,
Lightspeed Venture Partners and NEA, as well as VMware founder Diane Greene and
venture capitalist Andy Rachleff.

With $600M Invested in SDN Startups, the Ecosystem Builds
00006

Scott Raynovich, June 10, 2014

Ty

%y,
ST
LR

e im0 R

More than $600 million has been invested in at least two dozen software-

defined networking (SDN) startups so far, according to Rayno Report Related Articles
research. You can expect that to continue to climb. With the SDN ecosystem How to Effectively Embed SDN in the
starting to take hold with a broad range of alliances and distribution Enterprise

partnerships, we're just getting started. NFV and SDN: What's the Difference

Two Years Later?
The Arista IPO will help build visibility for next-generation, software-driven

networking. But Arista is selling its own hardware and is not an SDN pure-
play. A new line of SDN startups, with a more radical approach to software-
based networking, is building momentum. These newer SDN startups are
just getting their gear into customers’ hands and starting to build sales
channels, so you can expect a long revenue ramp.

sFlow Creator Peter Phaal On Taming
The Wilds Of SDN & Virtual
Networking

Featured Article: Bringing Data-Driven
SDN to the Network Edge

NFV Delivers Pervasive Intelligence

This excitement is boosting startup valuations, according to Rayno Report for MNOs

research. There are now at least ten SDN startups with valuations over $100

million. As | reported in April, a recent investment in Cumulus Networks

pushed up the valuation of the private company north of $300 million, according to industry sources. Big Switch, which
did a deal in 2012 valuing it near $170 million, took money from Intel in 2013, most likely boosting its valuation to over
$200 million, according to several sources.
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This startup may have built the world's fastest
networking switch chip
Barefoot Networks is also making its switch platform completely programmable

O060ODOGO OO0

By Stephen Lawson

Senior U.S. Correspondent, IDG News Service

MORE LIKE THIS

. Internet2 at 20: Alive and
; ﬁ, kicking
>
> Identifying the security
ﬁ pitfalls in SDN
. L
|

Lessons learned: Tribune
Media rebuilds IT from the
ground up
_ VIDEO
L EXpO
Highlights from Interop
4 2015

Barefoot Networks

Networking has undergone radical changes in the past few years, and two
startup launches this week show the revolution isn't over yet.

Barefoot Networks is making what it calls a fully programmable switch
platform. It came out of stealth mode on Tuesday, the same day 128
Technology emerged claiming a new approach to routing. Both say
they're rethinking principles that haven't changed since the 1990s.



Network programmability is getting traction

in many academic communities

| Distributed
Networking Systems Algorithms
SIGCOMM OSDI PODC
NSDI SOSP DISC
HotNets SOCC
CoNEXT

Security

CGCS
NDSS

Usenix
Security

S&P

PL

PLDI

POPL
OOPSLA



>7.7k

# of citations of the original

OpenFlow paper (¥) in ~10 years

(*) https://dl.acm.org/citation.cfm?id=1355746



Why? It's really a story in 3 stages



The network management crisis



Networks are large distributed systems
running a set of distributed algorithms

Control plane
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These algorithms produce the forwarding state
which drives IP traffic to its destination

Forwarding state

dest next-hop
Google 0
|
0 Yahoo! ]
Control plane 1 Skype O

Data plane

2 ETHZ 2




Operators adapt their network forwarding behavior
by configuring each network device individually



Given @’\, "@, and @\,
== L —
an existing network behavior a desired network behavior

induced by a low-level configuration C

Adapt C so that the network follows the new behavior



Given @’\, *@, and @\,
== L —
an existing network behavior a desired network behavior

induced by a low-level configuration C

Adapt C so that the network follows the new behavior



Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Cisco I0S

!
ip multicast-routing
|

interface Loopbacke
ip address 120.1.7.7 255.255.255.255

ip ospf 1 area ©
!
!
interface Etherneto/o
no ip address
!
interface Etherneto/0.17
encapsulation dotl1lQ 17
ip address 125.1.17.7 255.255.255.0
ip pim bsr-border
ip pim sparse-mode
!
!
router ospf 1
router-id 120.1.7.7
redistribute bgp 700 subnets
|

router bgp 700
neighbor 125.1.17.1 remote-as 100
|

address-family ipv4

redistribute ospf 1 match internal external 1 external 2

neighbor 125.1.17.1 activate
!
address-family ipv4 multicast

network 125.1.79.0 mask 255.255.255.0
redistribute ospf 1 match internal external 1 external 2

Juniper JunOS

interfaces {

s0-0/0/0 {
unit @ {
family inet {
address 10.12.1.2/24;

}
family mpls;
}
}
ge-0/1/0 {
vlan-tagging;
unit @ {
vlan-id 100;
family inet {
address 10.108.1.1/24;
}
family mpls;
}
unit 1 {
vlan-id 200;
family inet {
address 10.208.1.1/24;
}
}
}

protocols {
mpls {
interface all;
}

bep {



A single mistyped line is enough
to bring down the entire network

Anything else than 700 creates blackholes

redistribute bgp 700 subnets



It's not only about the problem of configuring...
the level of complexity in networks is staggering

The Data Plane The Control Plane

Source Mark Handley. Re-thinking the control architecture of the internet.
Keynote talk. REARCH. December 20009.



Complexity + Low-level Management = Problems



November 2017
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ORACLE + Dyn Products Explore Why Dyn Company Support SIGN IN Q

Widespread impact caused
by Level 3 BGP route leak

Research // Nov 7, 2017 // Doug Madory

For a little more than 90 minutes yesterday, internet service for millions of users in the U.S. and

around the world slowed to a crawl. Was this widespread service degradation caused by the e

https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak.. N S time. The cause was yet another BGP routing leak — a router

https://dyn.com/blog/widespread-impact-caused-by-level-3-bgp-route-leak/



For a little more than 90 minutes [...],

Internet service for millions of users in the U.S.
and around the world slowed to a crawl.

The cause was yet another BGP routing leak,
a router misconfiguration directing Internet traffic
from its intended path to somewhere else.



August 2017

Google routing blunder sent .- x
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Google routing blunder sent Japan's
Internet dark on Friday

Another big BGP blunder

By Richard Chirgwin 27 Aug 2017 at 22:35 40(Q) SHARE Y

Most read

Helicopter crashes after
manoeuvres to ‘avoid...
DJI Phantom drone'

That terrifying 'unfixable'
Microsoft Skype security
flaw: THE TRUTH

Last Friday, someone in Google fat-thumbed a border gateway protocol

(BGP) advertisement and sent Japanese Internet traffic into a black hole.
Stephen Elop and the fall

The trouble began when The Chocolate Factory “leaked” a big route of Nokia revisited
table to Verizon, the result of which was traffic from Japanese giants like
NTT and KDDI was sent to Google on the expectation it would be treated

as transit.

BBC presenter loses
appeal, must pay £420k
in IR35 crackdown

Since Google doesn't provide transit services, as BGP Mon explains, that
traffic either filled a link beyond its capacity, or hit an access control list, Microsoft's Windows 10

and disappeared. P 'l | Workstation adds killer
feature: No Candy Crush

The outage in Japan only lasted a couple of hours, but was so severe
that Japan Times reports the country's Internal Affairs and
Communications ministries want carriers to report on what went wrong.

BGP Mon dissects what went wrong here, reporting that more than

The Register uses cookies. Find out more. Close

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/



Someone in Google fat-thumbed a
Border Gateway Protocol (BGP) advertisement

and sent Japanese Internet traffic into a black hole.

[...] the result of which was traffic from Japanese giants
like NTT and KDDI was sent to Google

on the expectation it would be treated as transit.

The outage in Japan only lasted a couple of hours,
but was so severe that [...] the country's

Internal Affairs and Communications ministries

want carriers to report on what went wrong.



“Human factors are responsible

for 50% to 80% of network outages’

Juniper Networks, What’s Behind Network Downtime?, 2008



“Cost per network outage

can be as high as 750 000%”

Smart Management for Robust Carrier Network Health

and Reduced TCOI!, NANOG54, 2012



Solving this problem is hard because
network devices are completely locked down

closed software

closed hardware

Cisco™ device



Software-Defined Networking



What is SDN and how does it help?

 SDN is a new approach to networking
— Not about “architecture”: IP, TCP, etc.

— But about design of network control (routing, TE,...

'

 SDN is predicated around two simple concepts

— Separates the control-plane from the data-plane
— Provides open API to directly access the data-plane

* While SDN doesn’t do much, it enables a /ot



Rethinking the “Division of Labor”



Traditional Computer Networks

Data plane: "
Packet
processing &
delivery

Forward, filter, buffer, mark,
rate-limit, and measure packets



Traditional Computer Networks

Control plane:
Distributed algorithms,
establish state in devices

—
—
—_—
—

Track topology changes, compute
routes, install forwarding rules



Software Defined Networking (SDN)

Logically-centralized control




SDN advantages

Simpler management

— No need to “invert” control-plane operations

Faster pace of innovation

— Less dependence on vendors and standards

Easier interoperability

— Compatibility only in “wire” protocols

n

Simpler, cheaper equipment

— Minimal software




OpenFlow Networks



OpenFlow is an API
to a switch flow table

* Simple packet-handling rules
— Pattern: match packet header bits, i.e. flowspace
— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

10. src=1.2.*.*, dest=3.4.5.* = drop
05. src = *.*.*.* dest=3.4.*.* - forward(2)
01. src=10.1.2.3, dest=*.*.* * = send to controller
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OpenFlow switches can emulate
different kinds of boxes

* Router * Firewall
— Match: longest — Match: IP addresses and
destination IP prefix TCP/UDP port numbers
— Action: forward out a — Action: permit or deny
link o NAT
* Switch — Match: IP address and
— Match: destination MAC port
address — Action: rewrite address

— Action: forward or flood and port



Controller: Programmability

4 A

SDN/OpenFlow

controller

Receives events from switches Send commands to switches
Topology changes, (Un)install rules,
Traffic statistics, Query statistics,

Arriving packets Send packets



Controller: Programmability

4 \

while (true):
read event e:
if e == switch up:

- update topology
- populates switch table

Receives events from switches Send commands to switches
Topology changes, (Un)install rules,
Traffic statistics, Query statistics,

Arriving packets Send packets



Example OpenFlow Applications

Dynamic access control

Seamless mobility/migration

Server load balancing

Network virtualization

Using multiple wireless access points
Energy-efficient networking
Adaptive traffic monitoring

Denial-of-Service attack detection



E.g.: Dynamic Access Control

* |nspect first packet of a connection
* Consult the access control policy
* |nstall rules to block or route traffic

=




E.g.: Seamless Mobility/Migration

e See host send traffic at new location
* Modify rules to reroute the traffic

Bafln
BEaE8




E.g.: Server Load Balancing

* Pre-install load-balancing policy
. e Split traffic based on source IP




Challenges



Heterogeneous Switches

Number of packet-handling rules

Range of matches and actions

Multi-stage pipeline of packet processing
Offload some control-plane functionality (?)

access

control B |ook-up N |ook-up




Controller Delay and Overhead

* Controller is much slower than the switch
* Processing packets leads to delay and overhead

* Need to keep most packets in the “fast path”

H BN
packets -q



Distributed Controller

Controller
Application

For scalability
and reliability

Partition and replicate state

Controller
Application




Testing and Debugging

* OpenFlow makes programming possible
— Network-wide view at controller

— Direct control over data plane

* Plenty of room for bugs

— Still a complex, distributed system

* Need for testing techniques
— Controller applications
— Controller and switches
— Rules installed in the switches



Programming Abstractions

* OpenFlow is a low-level API

— Thin veneer on the underlying hardware
 Makes network programming  controller

possible, not easy! [:]l
H’

/

== = =
Switches



Example: Simple Repeater

Simple Repeater

def switch_join(switch):
# Repeat Port 1 to Port 2
pl = {in_port:1}
al = [forward(2)]
install(switch, pl, DEFAULT, al)

# Repeat Port 2 to Port 1

p2 = {in_port:2}

a2 = [forward(1)]
install(switch, p2, DEFAULT, a2)

When a switch joins the network, install two forwarding rules.



Example: Web Traffic Monitor

Monitor “port 80" traffic

def switch_join(switch):
# Web traffic from Internet
p = {inport:2,tp_src:80}
install(switch, p, DEFAULT, [])
query_stats(switch, p)

def stats_in(switch, p, bytes, ..)
print bytes
sleep(30)

a—
query_stats(switch, p) y iil

N
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Web traffic

When a switch joins the network, install one monitoring rule.



Composition: Repeater + Monitor

Repeater + Monitor

-

def switch_join(switch):
patl = {inport:1}
pat2 = {inport:2}
pat2web = {in_port:2, tp_src:80}
install(switch, patl, DEFAULT, None, [forward(2)])
install(switch, pat2web, , None, [forward(1)])
install(switch, pat2, DEFAULT, None, [forward(1)])
query_stats(switch, pat2web)

\

def stats_in(switch, xid, pattern, packets, bytes):
print bytes
sleep(30)
query_stats(switch, pattern)

J

Must think about both tasks at the same time.



Asynchrony: Switch-Controller Delays

« Common OpenFlow programming idiom
— First packet of a flow goes to the controller
— Controller installs rules to handle remaining packets

L Controller

EEE
eckers (P WD W

* What if more packets arrive before rules installed?
— Multiple packets of a flow reach the controller

* What if rules along a path installed out of order?
— Packets reach intermediate switch before rules do

Must think about all possible event orderings.



Better: Increase the
level of abstraction

« Separate reading from writing
— Reading: specify queries on network state
— Writing: specify forwarding policies

 Compose multiple tasks
— Write each task once, and combine with others

* Prevent race conditions
— Automatically apply forwarding policy to extra packets

« See http://frenetic-lang.org/



http://frenetic-lang.org/

Deep Network Programability



Pinky Gee, Brain, did OpenFlow take over the world?

The Brain Well... no.




OpenFlow is not all roses

The protocol is too complex (12 fields in OF 1.0 to 41 in 1.5)

switches must support complicated parsers and pipelines

The specification itself keeps getting more complex

extra features make the software agent more complicated

consequences  Switches vendor end up implementing parts of the spec.

which breaks the abstraction of one API to rule-them-all
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P4: Programming Protocol-Independent
Packet Processors
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ABSTRACT

P4 is a high-level language for programming protocol-inde-
pendent packet processors. P4 works in conjunction with
SDN control protocols like OpenFlow. In its current form,
OpenFlow explicitly specifies protocol headers on which it
operates. This set has grown from 12 to 41 fields in a few
vears, increasing the complexity of the specification while
still not providing the flexibility to add new headers. In this
paper we propose P4 as a strawman proposal for how Open-
Flow should evolve in the future. We have three goals: (1)
Reconfigurability in the field: Programmers should be able
to change the way switches process packets once they are
deploved. (2) Protocol independence: Switches should not
be tied to any specific network protocols. (3) Target inde-
pendence: Programmers should be able to describe packet-
processing functionality independently of the specifics of the
underlying hardware. As an example, we describe how to

neo P4 ta confionre a curiteh 0 add a new hierarchical l1abel

“"Princeton University *Google
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multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion (e.g.. NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending
the OpenFlow specification, we argue that future switches
should support flexible mechanisms for parsing packets and
matching header fields, allowing controller applications to
leverage these capabilities through a common, open inter-
face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-
tensible approach would be simpler, more elegant, and more
future-proof than today’s OpenFlow 1.x standard.

SDN Control Plane
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multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion (e.g., NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending
the OpenFlow specification, we argue that future switches
should support flexible mechanisms for parsing packets and
matching header fields, allowing controller applications to
leverage these capabilities through a common, open inter-
face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-
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Protocol Independent Switch Architecture (PISA) for
high-speed programmable packet forwarding

Parser Match-Action Pipeline Deparser
> > >
MOV T 1 (i
p > > >
() > > .




A slightly more accurate architecture

Ingress Egress

Match-Action Pipeline Match-Action Pipeline

1
YYVVVY

Parser Switching logic Deparser
crossbar, shared buffers, ...
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multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion (e.g., NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending
the OpenFlow specification, we argue that future switches
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face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-
tensible approach would be simpler, more elegant, and more
future-proof than today’s OpenFlow 1.x standard.
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By default,
PISA doesn't do anything, it's just an "architecture”

Ingress Egress

Parser Switching logic Deparser



P4 is a domain-specific language which describes
how a PISA architecture should process packets

a4

https://p4.org




IPv4

Logical behavior
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IPv6

PISA backend
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PISA + P4 is strictly more general OpenFlow

4

R

Program

Compile

l

P4 & OpenFlow

Apps

Northbound API

OpenFlow Controller

OpenFlow Protocol

OpenFlow Agent

>
Auto-Generated API

Driver

>

Target Binary

Programmable Data Plane ASIC

R
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Programmable Data Planes:
The future of networking?
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If you are interested, consider taking
Advanced Topics in Communication Networks [adv-net.ethz.ch]

o em Advanced Topics in Communic X

& > C (O @ Secure | https://adv-net.ethz.ch

Advancea\T oplcs in.

_Co nication-Net orké‘ ’Fa||2©J8a

This class will introduce students to advanced, research-level topics in the area of communication networks, both
theoretically and practically. Coverage will vary from semester to semester. Repetition for credit is possible, upon consent

of the instructor. During the Fall Semester of 2018, the class will concentrate on network programmability and network
data plane programming.

ype ethernc
p {
dstAddr :
srcAddr :
etherType *

s_port);
£_index, standard_ metadata. ingress_P
,(meta.if_i
¢ (current(e 64)) { J———
) der; // aummy
- arse cpu_hea
defa%lt parse_! ethernet;

oe cpu_header_t {

elds {
preamble:
device:
reason:

Lectures Exercises Project

Weekly lectures in the first part of the semester Ungraded theoretical and practical exercises as Graded practical project performed in groups
(more details coming soon) well as paper readings (more details coming soon) (more details coming soon)


http://adv-net.ethz.ch
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