
Communication Networks

Spring 2019

ETH Zürich (D-ITET)

Laurent Vanbever

April 29 2019

Materials inspired from Scott Shenker, Jennifer Rexford, and Ankit Singla

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

Two weeks ago on

Communication Networks

DNS
Congestion 

Control

google.ch 172.217.16.131

DNS
Congestion 

Control

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

Congestion control differs from flow control

both are provided by TCP though

Flow control

Congestion control

prevents one fast sender from

prevents a set of senders from

overloading the network

overloading a slow receiver

Congestion Window

CWND

How many bytes can be sent

without overflowing the routers?

Receiving Window

RWND

How many bytes can be sent

without overflowing the receiver buffer?

based on network conditions

based on the receiver input

Sender Window minimum(CWND, RWND)

The sender adapts its sending rate

based on these two windows

The 2 key mechanisms of Congestion Control

detecting

congestion

reacting to

congestion

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

it depends on the problem we are solving…

TCP approach is to gently increase when not congested

and to rapidly decrease when congested

What increase/decrease function

should we use?

question

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

#1

Initially, you want to quickly get a first-order estimate

of the available bandwidth

Increase cwnd = 1

cwnd += 1

initially

policy

Intuition Start slow but rapidly increase

until a packet drop occurs

upon receipt of an ACK

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

#2

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#3

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

Time

cwnd

Timeout

Slow 
Start

AIMD

Timeout

Slow 
Start

Slow 
Start

AIMD
AIMD

3 dups ACKs

Congestion control makes TCP throughput

look like a “sawtooth”

DNS
Congestion 

Control

google.ch 172.217.16.131

129.132.19.216

IP addressname

www.ethz.ch

DNS

The DNS system is a distributed database

which enables to resolve a name into an IP address

http://www.ethz.ch

To scale,

DNS adopt three intertwined hierarchies

naming structure

management

infrastructure

addresses are hierarchical

www.ee.ethz.ch

hierarchy of authority

over names

hierarchy of DNS servers

http://www.ee.ethz.ch

naming structure addresses are hierarchical

www.ee.ethz.ch

http://www.ee.ethz.ch

root

com org net edu gov mil chbe de fr

“.”

ethz

www ee infk + many more

epfl nzz

A name, e.g. ee.ethz.ch, represents

a leaf-to-root path in the hierarchy

http://ee.ethz.ch

management hierarchy of authority

over names

root

com org net edu gov mil chbe de fr

ethz

www ee infk

epfl nzz

The DNS system is

hierarchically administered

infrastructure hierarchy of DNS servers

com org net edu gov mil be de fr

(*) see http://www.root-servers.org/

ch

ethz

www ee infk

epfl nzz

root

13 root servers (managed professionally)

serve as root (*)

http://www.root-servers.org/

The bottom (and bulk) of the hierarchy is

managed by Internet Service Provider or locally

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

Every server knows the address of the root servers (*)

required for bootstrapping the systems

(*) see https://www.internic.net/domain/named.root

https://www.internic.net/domain/named.root

Each server knows the address of all children

Using DNS relies on two components

resolver software local DNS server

usually, near the endhoststrigger resolution process

configured statically (resolv.conf)

dynamically (DHCP)or

send request to local DNS server

get_host_by_name()

MX domain

CNAME alias

NS domain

A hostname

Records Name Value

IP address

DNS server name

Mail server name

canonical name

PTR IP address corresponding hostname

DNS resolution can either be

recursive or iterative

root	
DNS	server

.edu	servers

nyu.edu		servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

root	
DNS	server

.edu	servers

nyu.edu		servers

Where is .edu?

Where is www.nyu.edu?

Where is nyu.edu?
DNS	server
local

DNS	client  
(me.ee.ethz.ch)

This week on

Communication Networks

Web

http://www.google.ch

Video Streaming

HTTP-based

Web

http://www.google.ch

Video Streaming

The Web as we know it was founded in ~1990,

by Tim Berners-Lee, physicist at CERN

provide distributed access to data

Tim Berners-Lee Photo: CERN

The World Wide Web (WWW):

a distributed database of “pages”

linked together via the

Hypertext Transport Protocol (HTTP)

His goal:

The Web was and still is so successful as

it enables everyone to self-publish content

People weren’t looking for technical perfection

little interest in collaborative or idealistic endeavor

Self-publishing on the Web is easy, independent & free

and accessible, to everyone

People essentially want to make their mark

and find something neat…

The WWW is made of

three key components

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

We’ll focus on

its implementation

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

A Uniform Resource Locator (URL)

refers to an Internet ressource

protocol://hostname[:port]/directory_path/resource

protocol://hostname[:port]/directory_path/resource

HTTP(S)

FTP

SMTP…

protocol://hostname[:port]/directory_path/resource

DNS Name

IP address

protocol://hostname[:port]/directory_path/resource

default to protocol’s standard

HTTP:80, HTTPs:443

protocol://hostname[:port]/directory_path/resource

identify the resource

on the destination

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

HTTP is a rather simple

synchronous request/reply protocol

HTTP is text-based (ASCII)

human readable, easy to reason about

HTTP is layered over a bidirectional byte stream

almost always TCP

HTTP is stateless

it maintains no info about past client requests

PerformanceProtocol

PerformanceProtocol

HTTP clients make request to the server

method URL version<sp> <cr><lf><sp>

…

body

HTTP

request header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

method URL version<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

method GET return resource

HEAD return headers only

POST send data to server (forms)

URL relative to server (e.g., /index.html)

version 1.0, 1.1, 2.0

HTTP clients make request to the server

method URL version<sp> <cr><lf><sp>

…

body

HTTP

request header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Request headers are of variable lengths,

but still, human readable

Uses Authorization info

Acceptable document types/encoding

From (user email)

If-Modified-Since

Referrer (cause of the request)

User Agent (client software)

HTTP servers answers to clients’ requests

version status phrase<sp> <cr><lf><sp>

…

body

HTTP

response header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

version status phrase<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Status 1XX

2XX

3XX

4XX

5XX

3 digit response code reason phrase

informational

success

redirection

client error

server error

200 OK

301 Moved Permanently

303 Moved Temporarily

304 Not Modified

404 Not Found

505 Not Supported

version status phrase<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Like request headers, response headers are of

variable lengths and human-readable

Uses Location (for redirection)

Allow (list of methods supported)

Content encoding (e.g., gzip)

Content-Length

Content-Type

Expires (caching)

Last-Modified (caching)

HTTP is a stateless protocol,

meaning each request is treated independently

advantages disadvantages

server-side scalability

failure handling is trivial

some applications need state!

(shopping cart, user profiles, tracking)

How can you maintain state in a stateless protocol?

HTTP makes the client maintain the state.

This is what the so-called cookies are for!

client stores small state

on behalf of the server X

client sends state

in all future requests to X

can provide authentication

telnet google.ch 80
 
GET / HTTP/1.1
Host: www.google.ch

request

answer HTTP/1.1 200 OK
Date: Sun, 01 May 2016 14:10:30 GMT
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Server: gws 

Set-Cookie:
NID=79=g6lgURTq_BG4hSTFhEy1gTVFmSncQVsy
TJI260B3xyiXqy2wxD2YeHq1bBlwFyLoJhSc7jmcA
6TlFIBY7-
dW5lhjiRiQmY1JxT8hGCOtnLjfCL0mYcBBkpk8X4
NwAO28; expires=Mon, 31-Oct-2016 14:10:30
GMT; path=/; domain=.google.ch; HttpOnly

browser
will relay

this value
in following

requests

http://www.google.ch

PerformanceProtocol

Performance goals vary depending

on who you ask

User Content providerNetwork

operators

fast downloads

high availability

happy users

cost-effective  
infrastructure

no overloadwish

Improve HTTP to

compensate for

TCP weakspots

Caching and Replication
solution

Improve HTTP to

compensate for

TCP weakspots

solution

User

fast downloads

high availability

wish

Client Server
SYN

SYN/ACK

ACK + HTTP GET

...

Establish
connection

Request
response

Client
request

Close connection

Relying on TCP forces a HTTP client to

open a connection before exchanging anything

TCP establishment

HTTP request/response

Most Web pages have multiple objects,

naive HTTP opens one TCP connection for each…

Fetching n objects requires ~2n RTTs

R1
R2 R3

T1

T2 T3

One solution to that problem is to use

multiple TCP connections in parallel

User

Network operator

Content provider

Happy!

Happy!

Not Happy!

Why?

Another solution is to use persistent connections

across multiple requests, default in HTTP/1.1

Allow TCP to learn more accurate RTT estimate

and with it, more precise timeout value

Avoid overhead of connection set-up and teardown

clients or servers can tear down the connection

Allow TCP congestion window to increase

and therefore to leverage higher bandwidth

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

Yet another solution is to pipeline requests & replies

asynchronously, on one connection

batch requests and responses to  
reduce the number of packets

multiple requests can be packed  
into one TCP segment

Considering the time to retrieve n small objects,

pipelining wins

one-at-a-time

M concurrent

persistent

pipelined

RTTS

~2n

~2n/M

~n+1

2

Considering the time to retrieve n big objects,

there is no clear winners as bandwidth matters more

RTTS

~n * avg. file size

bandwidth

(*) see https://mobiforge.com/research-analysis/the-web-is-doom

Today, the average webpage size is 2.3 MB

as much as the original DOOM game…

https://mobiforge.com/research-analysis/the-web-is-doom

(*) see https://mobiforge.com/research-analysis/the-web-is-doom

Top web sites have decreased in size though

because they care about TCP performance

https://mobiforge.com/research-analysis/the-web-is-doom

User Content providerNetwork

operators

happy users

cost-effective  
infrastructure

no overloadwish

Caching and Replicationsolution

Caching leverages the fact that

highly popular content largely overlaps

Just think of how many times

you request the Facebook logo

per day

how often it actually changes

vs

Caching it save time for your browser

and decrease network and server load

Yet, a significant portion of

the HTTP objects are “uncachable"

dynamic data

scripts

cookies

SSL

advertising

Examples stock prices, scores, ...

results based on parameters

results may be based on passed data

cannot cache encrypted data

wants to measure # of hits ($$$)

To limit staleness of cached objects,

HTTP enables a client to validate cached objects

Client conditionally requests a ressources

using the “if-modified-since” header in the HTTP request

Server compares this against “last modified” time

of the resource and returns:

Not Modified if the resource has not changed

OK with the latest version

Server hints when an object expires (kind of TTL)

as well as the last modified date of an object

Caching can and is performed at different locations

client

close to the client

close to the destination

forward proxy

Content Distribution Network (CDN)

reverse proxy

browser cache

Many clients request the same information

clients

request

This increases servers and network’s load,

while clients experience unnecessary delays

clients

request

Reverse proxies cache documents close to servers,

decreasing their load

clients

request

reverse

proxy

This is typically done by

content provider

Forward proxies cache documents close to clients,

decreasing network traffic, server load and latencies

forward

proxies
This is typically done by

ISPs or enterprises

Content providerNetwork

operators

happy users

cost-effective  
infrastructure

no overloadwish

Caching and Replication
solution

The idea behind replication is to duplicate

popular content all around the globe

Places content closer to clients

only way to beat the “speed-of-light”

Spreads load on server

e.g., across multiple data-centers

Helps speeding up uncachable content

still have to pull it, but from closer

The problem of CDNs is to direct and serve

your requests from a close, non-overloaded replica

BGP Anycast

advertise the same IP prefix
from di"erent locations

avoided in practice,
any idea why?

DNS-based

returns ≠ IP addresses

based on

client geo-localization

server load

http://wwwnui.akamai.com/gnet/globe/index.html

Akamai is one of the largest CDNs in the world,

boasting servers in more than 20,000 locations

http://wwwnui.akamai.com/gnet/globe/index.html

Akamai uses a combination of

pull caching

push replication

direct result of clients requests

when expecting high access rate

together with some dynamic processing

dynamic Web pages, transcoding,…

“Akamaizing” content is easily done by modifying

content to reference the Akamai’s domains

Akamai creates domain names for each client

a128.g.akamai.net for cnn.com

Client modifies its URL to refer to Akamai’s domain

http://www.cnn.com/image-of-the-day.gif

becomes  
http://a128.g.akamai.net/image-of-the-day.gif

Requests are now sent to the CDN infrastructure

http://cnn.com
http://a128.g.akamai.net/image-of-the-day.gif

Web Video Streaming

HTTP-based

(c) copyright 2008, Blender Foundation / www.bigbuckbunny.org, CC-BY-3.0

We want the highest video quality

 1

http://www.bigbuckbunny.org

Without seeing this …

 2

!3

Why should you care? Just look at this:
video's share of global internet traffic

A naive approach: one-size-fits-all

 4

[bitmovin.com]

http://bitmovin.com

In practice, things are complex

 5

End-to-End Workflow for OTT

Production Preparation and Staging Distribution Consumption

News

Gathering

Sport Events

Premium

Content

Studio

Multi-bitrate

Encoding

Encapsulation

Protection

Origin Servers

VoD

Content &

Manifests

Live

Content &

Manifests

CDN

ACM SIGCOMM Tutorial - Aug. 2017 21[Adapted from: Adaptive Streaming of Traditional and Omnidirectional Media,
Begen & Timmerer, ACM SIGCOMM Tutorial, 2017]

The three steps behind most contemporary solutions

• Encode video in multiple bitrates

• Replicate using a content delivery network

• Video player picks bitrate adaptively

• Estimate connection’s available bandwidth
• Pick a bitrate ≤ available bandwidth

 6

 7

ReplicationEncoding Adaptation

 8

ReplicationEncoding Adaptation

 9[bitmovin.com]

http://bitmovin.com

 10[bitmovin.com]

http://bitmovin.com

 11[bitmovin.com]

http://bitmovin.com

 12

Simple solution for encoding:
use a “bitrate ladders”

[netflix.com]

 13

Problem: this doesn't take into account the variability
in the video content (slow moving vs. fast moving)

[bitmovin.com][netflix.com]

[netflix.com]

 14[bitmovin.com]

Encoding

http://bitmovin.com

 15

Encoding

[netflix.com]Bitrate (Kbps)

Video quality
(PSNR in dB)

Your player download “chunks” of video
at different bitrates

 16

…

…

Time

1s 2s
[netflix.com]

Depending on your network connectivity, 
your player fetches chunks of different qualities

 17

…

…

Time

1s 2s
[netflix.com]

Your player gets metadata about chunks via
“Manifest”

 18
[witestlab.poly.edu]

http://witestlab.poly.edu

 19

ReplicationEncoding Adaptation

 20To ~4Tbits of edge capacity in 4 racks...

 Now and...

Storage Appliance
■  Still 4U high
■  ~550 watts
■  288 TB of storage
■  2x 10G ports
■  20Gbit/s delivery

Flash Appliance
■  1U
■  ~175 watts
■  24 TB of flash
■  2x 40G ports
■  40Gbit/s delivery

Dave Temkin
06/01/2015

Open Connect:

Starting from a Greenfield
(a mostly Layer 0 talk)

Storage Appliance
■  Still 4U high
■  ~550 watts
■  288 TB of storage
■  2x 10G ports
■  20Gbit/s delivery

Flash Appliance
■  1U
■  ~175 watts
■  24 TB of flash
■  2x 40G ports
■  40Gbit/s delivery

Dave Temkin
06/01/2015

Open Connect:

Starting from a Greenfield
(a mostly Layer 0 talk)

 21[netflix.com]

 22[netflix.com]

 23

ReplicationEncoding Adaptation

Network

Capacity (Mbps)

Time

Network

1s

Capacity (Mbps)

Time

1s chunks at
different bit-rates

Playing out

Downloading

Network

Capacity < current rate ⇒ decrease rate

Common solution approach

• Encode video in multiple bitrates

• Replicate using a content delivery network

• Video player picks bitrate adaptively

• Estimate connection’s available bandwidth
• Pick a bitrate ≤ available bandwidth

 27

Estimating available capacity

 28

A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell⇤, Mark Watson⇤

Stanford University, Netflix
⇤

{huangty,rjohari,nickm}@stanford.edu, {mtrunnell,watsonm}@netflix.com

ABSTRACT
Existing ABR algorithms face a significant challenge in esti-
mating future capacity: capacity can vary widely over time,
a phenomenon commonly observed in commercial services.
In this work, we suggest an alternative approach: rather
than presuming that capacity estimation is required, it is
perhaps better to begin by using only the bu↵er, and then
ask when capacity estimation is needed. We test the viabil-
ity of this approach through a series of experiments spanning
millions of real users in a commercial service. We start with
a simple design which directly chooses the video rate based
on the current bu↵er occupancy. Our own investigation re-
veals that capacity estimation is unnecessary in steady state;
however using simple capacity estimation (based on immedi-
ate past throughput) is important during the startup phase,
when the bu↵er itself is growing from empty. This approach
allows us to reduce the rebu↵er rate by 10–20% compared
to Netflix’s then-default ABR algorithm, while delivering a
similar average video rate, and a higher video rate in steady
state.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General

Keywords
HTTP-based Video Streaming, Video Rate Adaptation Al-
gorithm

1. INTRODUCTION
During the evening peak hours (8pm–1am EDT), well over

50% of US Internet tra�c is video streamed from Netflix and
YouTube [16, 17]. Unlike traditional video downloads that
must complete fully before playback can begin, streaming
video starts playing within seconds. Each video is encoded
at a number of di↵erent rates (typically 235kb/s standard
definition to 5Mb/s high definition) and stored on servers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626296.

0 500 1000 1500 2000 2500
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Figure 1: Video streaming clients experience highly
variable end-to-end throughput.

as separate files. The video client—running on a home
TV, game console, web browser, DVD player, etc.—chooses
which video rate to stream by monitoring network condi-
tions and estimating the available network capacity. This
process is referred to as adaptive bit rate selection or ABR.
ABR algorithms used by such services balance two over-

arching goals. On one hand, they try to maximize the video
quality by picking the highest video rate the network can
support. On the other hand, they try to minimize rebu↵er-
ing events which cause the video to halt if the client’s play-
back bu↵er goes empty.
It is easy for a streaming service to meet either one of the

objectives on its own. To maximize video quality, a service
could just stream at the maximum video rate Rmax all the
time. Of course, this would risk extensive rebu↵ering. On
the other hand, to minimize rebu↵ering, the service could
just stream at the minimum video rate Rmin all the time—
but this extreme would lead to low video quality. The design
goal of an ABR algorithm is to simultaneously obtain high
performance on both metrics in order to give users a good
viewing experience [7].
One approach is to pick a video rate by estimating fu-

ture capacity from past observations. In an environment
with constant throughput, past observations are reliable to
predict future capacity. However, in an environment with
highly variable throughput, although past observations still
provide valuable ballpark figures, accurate estimation of fu-
ture capacity becomes challenging. Figure 1 is a sample
trace reported by a Netflix video player, showing how the

Avg. throughput over
chunk download (kbps)

Time(s)

[A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service,
Huang et al., ACM SIGCOMM 2014]

Estimating available capacity

 29

“A random sample of 300,000
Netflix sessions shows that roughly
10% of sessions experience a
median throughput less than half of
the 95th percentile throughput.”

“20–30% of rebuffers are
unnecessary”

[A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service,
Huang et al., ACM SIGCOMM 2014]

Capacity estimation

 30

Capacity (Mbps)

Time

Decide based on the buffer alone?

Network

Buffer-based adaptation

 31

Nearly full buffer ⇒ large rate

Network

Buffer-based adaptation

 32

Nearly empty buffer ⇒ small rate

Network

Buffer-based adaptation

 33

Risky''
Area'

Playout&Buffer&Occupancy&

N
ex
t&C

hu
nk
’s
&V
id
eo

&R
at
e&

Rmin&

Rmax&

…
&

0%&

Bmax&

Safe'from''
Unnecessary''
rebuffering'

Buffer occupancy

Next chunk’s rate

Low
buffer:

High
buffer:

[A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service,
Huang et al., ACM SIGCOMM 2014]

Problem: startup phase?

Pick a rate based on immediate past throughput

Summary

• Encode video in multiple bitrates

• Replicate using a content delivery network

• Video player picks bitrate adaptively

• Problem of active research interest, many
competing algorithms and objectives

 35

Communication Networks

Spring 2019

ETH Zürich (D-ITET)

Laurent Vanbever

April 29 2019

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

