
Communication Networks

Spring 2019

ETH Zürich (D-ITET)

Laurent Vanbever

April 15 2019

Materials inspired from Scott Shenker & Jennifer Rexford

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

Last week on

Communication Networks

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We started to look at the transport layer

What Problems Should Be Solved Here?

● Data delivering, to the correct application
● IP just points towards next protocol
● Transport needs to demultiplex incoming data (ports)

● Files or bytestreams abstractions for the applications
● Network deals with packets
● Transport layer needs to translate between them

● Reliable transfer (if needed)
● Not overloading the receiver
● Not overloading the network

What Is Needed to Address These?

● Demultiplexing: identifier for application process
● Going from host-to-host (IP) to process-to-process

● Translating between bytestreams and packets:
● Do segmentation and reassembly

● Reliability: ACKs and all that stuff
● Corruption: Checksum
● Not overloading receiver: “Flow Control”

● Limit data in receiver’s buffer
● Not overloading network: “Congestion Control”

UDP: User Datagram Protocol
● Lightweight communication between processes

● Avoid overhead and delays of ordered, reliable delivery
● Send messages to and receive them from a socket 

● UDP described in RFC 768 – (1980!)
● IP plus port numbers to support (de)multiplexing
● Optional error checking on the packet contents
● (checksum field = 0 means “don’t verify checksum”)

 SRC port DST port

checksum length

DATA

Transmission Control Protocol (TCP)

● Reliable, in-order delivery

● Ensures byte stream (eventually) arrives intact
● In the presence of corruption and loss

● Connection oriented

● Explicit set-up and tear-down of TCP session
● Full duplex stream-of-bytes service

● Sends and receives a stream of bytes, not messages
● Flow control

● Ensures that sender doesn’t overwhelm receiver
● Congestion control

● Dynamic adaptation to network path’s capacity

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

This week on

Communication Networks

DNS
Congestion 

Control

google.ch 172.217.16.131

DNS
Congestion 

Control

Because of traffic burstiness and lack of BW reservation,

congestion is inevitable

If many packets arrive within

the node cannot keep up anymore

a short period of time

Congestion is harmful

average packet arrival rate a

transmission rate of outgoing link

average bits arrival rate

R

fixed packets length L

La

traffic intensity La/R

[packet/sec]

[bit/sec]

[bit

[bit/sec]

When the traffic intensity is >1, the queue will increase

without bound, and so does the queuing delay

Golden rule Design your queuing system,

so that it operates far from that point

La/R 1

A
ve

ra
g
e

q
u
eu

in
g
 d

el
ay

When the traffic intensity is <=1,

queueing delay depends on the burst size

The Internet almost died of congestion in 1986

throughput collapsed from 32 Kbps to… 40 bps

Recent resurgence of research interest after brief lag

new methods (ML), context (Data centers), requirements

Van Jacobson saved us with Congestion Control

his solution went right into BSD

Congestion is not a new problem

The Internet almost died of congestion in 1986

throughput collapsed from 32 Kbps to… 40 bps

original

behavior

On connection,

nodes send full window of packets

Upon timer expiration,

retransmit packet immediately

window-sized burst of packetsnet effect

meaning sending rate only limited by flow control

Sudden load increased the round-trip time (RTT)

faster than the hosts’ measurements of it

As RTT exceeds the maximum retransmission interval,

hosts begin to retransmit packets

This phenomenon is known as congestion collapse

Hosts are sending each packet several times,  
eventually some copies arrive at the destination.

Increase in network load results in

a decrease of useful work done

Load

Th
ro

ug
hp

ut
D

el
ay

knee cliff

Knee point after which

throughput

delay

increases

increases quickly

slowly

Cliff point after which

throughput

delay

decreases

tends to infinity

quickly

congestion
collapse

Van Jacobson saved us with Congestion Control

his solution went right into BSD

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

Congestion control differs from flow control

both are provided by TCP though

Flow control

Congestion control

prevents one fast sender from

prevents a set of senders from

overloading the network

overloading a slow receiver

TCP solves both using two distinct windows

Flow control

Congestion control

prevents one fast sender from

prevents a set of senders from

overloading the network

overloading a slow receiver

solved using a receiving window

solved using a “congestion” window

Congestion Window

CWND

How many bytes can be sent

without overflowing the routers?

Receiving Window

RWND

How many bytes can be sent

without overflowing the receiver buffer?

based on network conditions

based on the receiver input

Sender Window minimum(CWND, RWND)

The sender adapts its sending rate

based on these two windows

The 2 key mechanisms of Congestion Control

detecting

congestion

reacting to

congestion

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

Approach #1 Network could tell the source

but signal itself could be lost

Approach #2 Measure packet delay

but signal is noisy

Approach #3 Measure packet loss

fail-safe signal that TCP already has to detect

delay often varies considerably

There are essentially three ways

to detect congestion

Approach #3 Measure packet loss

fail-safe signal that TCP already has to detect

Packet dropping is the best solution

delay- and signaling-based methods are hard & risky

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

it depends on the problem we are solving…

TCP approach is to gently increase when not congested

and to rapidly decrease when congested

What increase/decrease function

should we use?

question

Remember that Congestion Control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

#1

The goal here is to quickly get a first-order estimate

of the available bandwidth

Increase cwnd = 1

cwnd += 1

initially

policy

Intuition Start slow but rapidly increase

until a packet drop occurs

upon receipt of an ACK

This increase phase, known as slow start,

corresponds to an… exponential increase of CWND!

D A D D A A D D

Src

Dst

D D

1 2 43

A A A A

8

slow start is called like this only because of starting point

The problem with slow start is that it can result in

a full window of packet losses

Example Assume that CWND is just enough to “fill the pipe”

After one RTT, CWND has doubled

All the excess packets are now dropped

Solution We need a more gentle adjustment algorithm

once we have a rough estimate of the bandwidth

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

#2

The goal here is to track the available bandwidth,

and oscillate around its current value

Two possible variations

cwnd = a * cwnd

cwnd = b + cwnd

Multiplicative Increase or Decrease

Additive Increase or Decrease

… leading to four alternative design

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

To select one scheme, we need to consider

the 3rd problem: fairness

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#3

TCP notion of fairness: 2 identical flows  
should end up with the same bandwidth

queue (20 pkts)host A

50 pkts/RTT

host B

capacity

Consider first a single flow between A and B

and AIMD

congestion CWND increases by one packet every ACK

congestionupon

without

CWND decreases by a factor 2

0

10

20

30

40

50

60

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

Backlog in router (pkts)
Congested if > 20

Rate (pkts/RTT)

A’s throughput

B’s throughput

We can analyze the system behavior

using a system trajectory plot

Link capacity: 1 Mbps

A’s throughput

B’s throughput

1

1

efficiency line

The system is efficient if the capacity is fully used,

defining an efficiency line where a + b = 1

A’s throughput

B’s throughput

1

1

efficiency line

The goal of congestion control is to bring the system

as close as possible to this line, and stay there

A’s throughput

B’s throughput

1

1

congestion

1

1

under-utilization

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

The system is fair whenever A and B have equal

throughput, defining a fairness line where a = b

A’s throughput

B’s throughput

1

1

fairness line

A’s throughput

B’s throughput

B gets more than A

1

1

fairness line

A’s throughput

B’s throughput

A gets more than B

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

inefficient & unfair

.2

.5

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

congested .7

.5

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

efficient & unfair .3

.7

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

efficient & fair .5

.5

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

AIAD does not converge to fairness, nor efficiency:

the system fluctuates between two fairness states

Adding a constant:

move along 45 deg

state 1 state 2

0

15

30

45

60

1 18 35 52 69 86 103120137 154171188205 222239256 273290307 324341358 375392409 426443460 477494

AIAD does not converge to fairness, nor efficiency:

the system fluctuates between two fairness states

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

MIMD does not converge to fairness, nor efficiency:

the system fluctuates along a equi-fairness line

equi-fairness line

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

MIAD converges to a totally unfair allocation,

favoring the flow with a greater rate at the beginning

A’s throughput

B’s throughput

1

1

efficiency line

If flows start along the fairness line, MIAD fluctuates

along it, yet deviating from it at the slightest change

fairness line

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

Intuition During increase,

both flows gain bandwidth at the same rate

During decrease,

the faster flow releases more

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

0

15

30

45

60

1 18 35 52 69 86 103120137154 171188205 222239256 273290307 324341358 375392409 426443460 477494

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

In practice,

TCP implements AIMD

In practice,

TCP implements AIMD

After each ACK,

Increment cwnd by 1/cwnd

linear increase of max. 1 per RTT

Implementation

When does a sender leave slow-start

and start AIMD?
Question

Introduce a slow start treshold,

adapt it in function of congestion:

on timeout, sstresh = CNWD/2

Initially:

 cwnd = 1
 ssthresh = infinite
New ACK received:
 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
Timeout:

 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

TCP congestion control in less than 10 lines of code

Time

cwnd

Timeout

Slow 
Start

AIMD

ssthresh

Timeout

Slow 
Start

Slow 
Start

AIMD

The congestion window of a TCP session typically

undergoes multiple cycles of slow-start/AIMD

Going back all the way back to 0 upon timeout

completely destroys throughput

solution Avoid timeout expiration…

which are usually >500ms

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it

this is known as a “fast retransmit”

TCP automatically resends a segment

after receiving 3 duplicates ACKs for it

this is known as “fast recovery”

After a fast retransmit, TCP switches back to AIMD,

without going all way the back to 0

Initially:
 cwnd = 1
 ssthresh = infinite
New ACK received:

 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
 dup_ack = 0
Timeout:
 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

TCP congestion control (almost complete)

Duplicate ACKs received:

 dup_ack ++;
 if (dup_ack >= 3):
 /* Fast Recovery */
 ssthresh = cwnd/2
 cwnd = ssthresh

Initially:
 cwnd = 1
 ssthresh = infinite
New ACK received:

 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
 dup_ack = 0
Timeout:
 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

dup_ack = 0

Duplicate ACKs received:

 dup_ack ++;
 if (dup_ack >= 3):
 /* Fast Recovery */
 ssthresh = cwnd/2
 cwnd = ssthresh

Time

cwnd

Timeout

Slow 
Start

AIMD

Timeout

Slow 
Start

Slow 
Start

AIMD
AIMD

3 dups ACKs

Congestion control makes TCP throughput

look like a “sawtooth”

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We now have completed the transport layer (!)

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

DNS
Congestion 

Control

google.ch 172.217.16.131

Internet has one global system for

addressing hosts

naming hosts

IP

DNS

by design

by "accident", an afterthought

Internet has one global system for

naming hosts DNS

by "accident", an afterthought

Using Internet services can be divided

into four logical steps

The application invokes transport protocol to

establish an app-to-app connection

step 4

A person has name of entity

she wants to access

step 1 www.ethz.ch

She invokes an application

to perform the task

step 2 Chrome

The application invokes DNS

to resolve the name into an IP address

step 3 129.132.19.216

129.132.19.216

IP addressname

www.ethz.ch

DNS

The DNS system is a distributed database

which enables to resolve a name into an IP address

http://www.ethz.ch

In practice,

names can be mapped to more than one IP

129.132.19.216

IP addressname

www.ethz.ch

DNS

www.netflix.com 52.31.246.79

52.49.6.246

(load-balancing)

52.50.212.245 +5 more!

http://www.ethz.ch
http://www.netflix.com

129.132.19.216

IP addressname

www.ethz.ch

DNS

www.vanbever.eu

www.route-aggregation.net

188.165.240.60

188.165.240.60

In practice,

IPs can be mapped by more than one name

http://www.ethz.ch
http://vanbever.eu
http://www.route-aggregation.net

initially

How does one resolve a name into an IP?

all host to address mappings

were in a file called hosts.txt

in /etc/hosts

problem scalability in terms of query load & speed

management

consistency

availability

When you need…

you add… a hierarchical structure

When you need…

you add… a layer of indirection

more flexibility,

more scalability,

To scale,

DNS adopt three intertwined hierarchies

naming structure

management

infrastructure

hierarchy of addresses

https://www.ee.ethz.ch/de/departement/

hierarchy of authority

over names

hierarchy of DNS servers

https://www.ee.ethz.ch/de/departement/

naming structure addresses are hierarchical

https://www.ee.ethz.ch/de/departement/

https://www.ee.ethz.ch/de/departement/

root

com org net edu gov mil chbe de fr + many more

“.”

Top Level Domain (TLDs) sit at the top

root

com org net edu gov mil chbe de fr

“.”

ethz + many moreepfl nzz

Domains are subtrees

root

com org net edu gov mil chbe de fr

“.”

ethz

www ee infk + many more

epfl nzz

A name, e.g. ee.ethz.ch, represents

a leaf-to-root path in the hierarchy

http://ee.ethz.ch

management hierarchy of authority

over names

root

com org net edu gov mil chbe de fr

ethz

www ee infk

epfl nzz

The DNS system is

hierarchically administered

com org net edu gov mil be de fr

managed by IANA (*)

(*) see http://www.iana.org/domains/root/db

ch

ethz

www ee infk

epfl nzz

root

http://www.iana.org/domains/root/db

root

com org net edu gov mil be de fr

ethz

www ee infk

epfl nzz

ch

managed by The Swiss Education & Research Network (*)

(*) see https://www.switch.ch/about/id/

root

com org net edu gov mil be de frch

www ee infk

nzz
managed by

ethz
ETH Zürich
Informatikdienste ICT-Networks

Hierarchical administration means

that name collision is trivially avoided

infrastructure hierarchy of DNS servers

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

The DNS infrastructure is

hierarchically organized

com org net edu gov mil be de fr

(*) see http://www.root-servers.org/

ch

ethz

www ee infk

epfl nzz

root

13 root servers (managed professionally)

serve as root (*)

http://www.root-servers.org/

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

m.

VeriSign, Inc.

University of Southern California

Cogent Communications

University of Maryland

NASA

Internet Systems Consortium

US Department of Defense

US Army

Netnod

VeriSign, Inc.

RIPE NCC

ICANN

WIDE Project

To scale root servers,

operators rely on BGP anycast

Routing finds shortest-pathsIntuition

This enables seamless replications of resources

If several locations announce the same prefix,

then routing will deliver the packets to  
the “closest” location

AS10

AS20 AS30

AS40

AS50

 129.132.0.0/16

 Path: 30

 129.132.0.0/16

 Path: 50

IP traffic IP traffic

193.0.14.129
193.0.14.129

Do you see any problems in

performing load-balancing this way?

Instances of the k-root server (*) are hosted

in more than 40 locations worldwide

(*) see k.root-servers.org

http://k.root-servers.org

Two of these locations are in Switzerland:

in Zürich and in Geneva

Swiss Internet Exchange

ns1.ch-zrh.k.ripe.net

CERN

ns1.ch-gva.k.ripe.net

http://ns1.ch-zrh.k.ripe.net
http://ns1.ch-gva.k.ripe.net

All locations announce 193.0.14.0/23 in BGP,

with 193.0.14.129 being the IP of the server

Do you mind guessing which one we use, here… in Zürich?

Two of these locations are in Switzerland:

in Zürich and in Geneva

Each instance receives up to 70k queries per second

summing up to more than 4 billions queries per day

root

ethz

www ee infk

epfl nzz

com org net edu gov mil be de frch

TLDs server are also managed professionally

by private or non-profit organization

The bottom (and bulk) of the hierarchy is

managed by Internet Service Provider or locally

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

Every server knows the address of the root servers (*)

required for bootstrapping the systems

(*) see https://www.internic.net/domain/named.root

https://www.internic.net/domain/named.root

com org net edu gov mil be de frch

root

Each root server knows

the address of all TLD servers

ch. 172800 IN NS a.nic.ch.
ch. 172800 IN NS b.nic.ch.
ch. 172800 IN NS c.nic.ch.
ch. 172800 IN NS d.nic.ch.
ch. 172800 IN NS e.nic.ch.
ch. 172800 IN NS f.nic.ch.
ch. 172800 IN NS h.nic.ch.

lvanbever:~$ dig @a.root-servers.net ch.

From there on,

each server knows the address of all children

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

Any .ch DNS server knowns

the addresses of all sub-domains

To scale,

DNS adopt three intertwined hierarchies

naming structure

management

infrastructure

addresses are hierarchical

https://www.ee.ethz.ch/de/departement/

hierarchy of authority

over names

hierarchy of DNS servers

https://www.ee.ethz.ch/de/departement/

To ensure availability, each domain must have

at least a primary and secondary DNS server

DNS queries can be load-balanced

across the replicas

Ensure name service availability

as long as one of the servers is up

On timeout, client use alternate servers

exponential backoff when trying the same server

Overall, the DNS system is highly

scalable, available, and extensible

scalable

available

extensible

#names, #updates, #lookups, #users,

but also in terms of administration

domains replicate independently

of each other

any level (including the TLDs)

can be modified independently

Provide X with the name and IP of your DNS servers

e.g., [ns1.next-startup.ch,129.132.19.253]

You register next-startup.ch at a registrar X

e.g. Swisscom or GoDaddy

You set-up a DNS server @129.132.19.253

define A records for www, MX records for next-startup.ch…

You’ve founded next-startup.ch and want to host it

yourself, how do you insert it into the DNS?

http://ns1.next-startup.ch
http://next-startup.ch
http://next-startup.ch

Using DNS relies on two components

resolver software local DNS server

usually, near the endhoststrigger resolution process

configured statically (resolv.conf)

dynamically (DHCP)or

send request to local DNS server

gethostbyname()

DNS query and reply uses UDP (port 53),

reliability is implemented by repeating requests (*)

(*) see Book (Section 5)

A DNS server stores Resource Records

composed of a (name, value, type, TTL)

MX domain

CNAME alias

NS domain

A hostname

Records Name Value

IP address

DNS server name

Mail server name

canonical name

PTR IP address corresponding hostname

DNS resolution can either be

recursive or iterative

When performing a recursive query,

the client offload the task of resolving to the server

root	servers

.edu	servers

nyu.edu		
servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

root	
DNS	server

.edu	servers

nyu.edu		
servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

root	
DNS	server

.edu	servers

nyu.edu		
servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

root	
DNS	server

.edu	servers

nyu.edu		servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

When performing a iterative query, the server  
only returns the address of the next server to query

root	
DNS	server

.edu	servers

nyu.edu		servers
DNS	client  
(me.ee.ethz.ch)

DNS	server
local

root	
DNS	server

.edu	servers

nyu.edu		servers

Where is .edu?

Where is www.nyu.edu?

Where is nyu.edu?
DNS	server
local

DNS	client  
(me.ee.ethz.ch)

To reduce resolution times,

DNS relies on caching

Authoritative servers associate a lifetime to each record

Time-To-Live (TTL)

DNS servers cache responses to former queries

and your client and the applications (!)

DNS records can only be cached for TTL seconds

after which they must be cleared

As top-level servers rarely change & popular website

visited often, caching is very effective (*)

9% of lookups are unique

Top 10% of names account for 70% of lookups

Limit cache hit rate to 91%

Practical cache hit rates ~75%

(*) see https://pdos.csail.mit.edu/papers/dns:ton.pdf

https://pdos.csail.mit.edu/papers/dns:ton.pdf

Communication Networks

Spring 2019

ETH Zürich (D-ITET)

Laurent Vanbever

April 15 2019

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

