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The Internet topology is shaped  

according to business relationships

AS10

AS20 AS30

AS40

AS50



There are 2 main business relationships today:

customer/provider

peer/peer

many less important ones (siblings, backups,…)



There are 2 main business relationships today:

customer/provider

peer/peer



Customers pay providers  

to get Internet connectivity

provider

customer

$$$



Peers don’t pay each other for connectivity, 

they do it out of common interest

peer peer

DT and ATT exchange tons of traffic. 

they save money by directly connecting to each other



Business relationships conditions 

route selection

For a destination p, prefer routes coming from

customers over

peers over

providers

route type



from

send to

peer

provider

customer peer provider

customer

Business relationships conditions 

route exportation



Routes coming from customers 

are propagated to everyone else

from

send to

peer

provider

customer peer provider

customer ✓ ✓ ✓



Routes coming from peers and providers 

are only propagated to customers

from

send to

peer

provider

customer peer provider

customer ✓ ✓ ✓

✓
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AS10

AS20

AS30

AS40
AS50

BGP sessions come in two flavors



external BGP (eBGP) sessions  

connect border routers in different ASes

eBGP  

session



iBGP sessions are used to disseminate  

externally-learned routes internally

 129.132.0.0/16

 Path: 20
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 Path: 20  129.132.0.0/16

 Path: 20

 129.132.0.0/16

 Path: 20



BGP UPDATEs carry an IP prefix
together with a set of attributes

 

 

IP prefix

Attributes

used in route selection/exportation decisions 

Describe route properties

are either local

or global

(only seen on iBGP)

(seen on iBGP and eBGP)



LOCAL-PREF outbound traffic control

MED inbound traffic control

AS-PATH loop avoidance

outbound traffic control

inbound traffic control

NEXT-HOP egress point identification

Attributes Usage



Prefer routes…

with higher LOCAL-PREF

with shorter AS-PATH length

with lower MED

learned via eBGP instead of iBGP

with lower IGP metric to the next-hop

with smaller egress IP address (tie-break)
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HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We’re continuing our journey up the layers, 

now looking at the transport layer



● Functionality implemented in network 
● Keep minimal (easy to build, broadly applicable) 

● Functionality implemented in the application 
● Keep minimal (easy to write) 
● Restricted to application-specific functionality 

● Functionality implemented in the “network stack” 
● The shared networking code on the host 
● This relieves burden from both app and network 
● The transport layer is a key component here

What do we need in the Transport layer?



What do we need in the Transport layer?

● Application layer 
● Communication for specific applications 
● e.g., HyperText Transfer Protocol (HTTP),  

        File Transfer Protocol (FTP)  

● Network layer 
● Global communication between hosts 
● Hides details of the link technology 
● e.g., Internet Protocol (IP)



What Problems Should Be Solved Here?

● Data delivering, to the correct application 
● IP just points towards next protocol 
● Transport needs to demultiplex incoming data (ports) 

● Files or bytestreams abstractions for the applications 
● Network deals with packets 
● Transport layer needs to translate between them 

● Reliable transfer (if needed) 
● Not overloading the receiver 
● Not overloading the network



What Is Needed to Address These?

● Demultiplexing: identifier for application process 
● Going from host-to-host (IP) to process-to-process 

● Translating between bytestreams and packets: 
● Do segmentation and reassembly 

● Reliability: ACKs and all that stuff 
● Corruption: Checksum 
● Not overloading receiver: “Flow Control” 

● Limit data in receiver’s buffer 
● Not overloading network: “Congestion Control”



UDP: Datagram messaging service

● No-frills extension of “best-effort” IP 

● UDP provides only two services to the App layer 
● Multiplexing/Demultiplexing among processes 
● Discarding corrupted packets (optional)

● UDP provides a connectionless, unreliable transport service



TCP: Reliable, in-order delivery

● TCP provides a connection-oriented, reliable, bytestream  
transport service 

● What UDP provides, plus: 
● Retransmission of lost and corrupted packets 

● Flow control (to not overflow receiver) 
● Congestion control (to not overload network) 
● “Connection” set-up & tear-down



Connections (or sessions)

● Reliability requires keeping state 
● Sender: packets sent but not ACKed, and related timers 
● Receiver: noncontiguous packets 

● Each bytestream is called a connection or session 
● Each with their own connection state 
● State is in hosts, not network! 

●



What transport protocols do not provide

● Delay and/or bandwidth guarantees 
● This cannot be offered by transport 
● Requires support at IP level (and let’s not go there) 

● Sessions that survive change-of-IP-address 
● This is an artifact of current implementations 
● As we shall see….



Important Context: Sockets and Ports

● Sockets: an operating system abstraction 

● Ports: a networking abstraction 
● This is not a port on a switch (which is an interface) 
● Think of it as a logical interface on a host



Sockets

● A socket is a software abstraction by which an application process 
exchanges network messages with the (transport layer in the) 
operating system  
● socketID = socket(…, socket.TYPE) 
● socketID.sendto(message, …)   
● socketID.recvfrom(…)  

● Two important types of sockets 
● UDP socket: TYPE is SOCK_DGRAM  
● TCP socket: TYPE is SOCK_STREAM



Ports

● Problem: which app (socket) gets which packets 

● Solution: port as transport layer identifier (16 bits) 
● Packet carries source/destination port numbers  

in transport header  

● OS stores mapping between sockets and ports 
● Port: in packets 
● Socket: in OS



More on Ports

● Separate 16-bit port address space for UDP, TCP 

● “Well known” ports (0-1023) 
● Agreement on which services run on these ports 
● e.g., ssh:22, http:80 
● Client (app) knows appropriate port on server 
● Services can listen on well-known port 

● Ephemeral ports (most 1024-65535): 
● Given to clients (at random)



Multiplexing and Demultiplexing
● Host receives IP datagrams 

● Each datagram has source and destination IP address,  
● Each segment has source and destination port number  

● Host uses IP addresses and port numbers to direct the segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(message)

other header fields



4-bit 
Version

4-bit 
Header 
Length

8-bit 
Type of Service 

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit 
Flags 13-bit Fragment Offset

8-bit Time to  
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



4 5 8-bit 
Type of Service 

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit 
Flags 13-bit Fragment Offset

8-bit Time to  
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload



4 5 8-bit 
Type of Service 

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit 
Flags 13-bit Fragment Offset

8-bit Time to  
Live (TTL)

6 = TCP 
17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload



4 5 8-bit 
Type of Service 

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit 
Flags 13-bit Fragment Offset

8-bit Time to  
Live (TTL)

6 = TCP 
17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

16-bit Source Port 16-bit Destination Port

More transport header fields ….



Connection Mappings

● For UDP ports (SOCK_DGRAM) 
● OS stores (local port, local IP address) !" socket 

● For TCP ports (SOCK_STREAM) 
● OS stores (local port, local IP, remote port, remote IP) !" socket 

● Why the difference? 

● Implications for mobility 

● Why do you need to include local IP?



UDP



UDP: User Datagram Protocol 
● Lightweight communication between processes 

● Avoid overhead and delays of ordered, reliable delivery 
● Send messages to and receive them from a socket 

● UDP described in RFC 768 – (1980!) 
● IP plus port numbers to support (de)multiplexing 
● Optional error checking on the packet contents 
● (checksum field = 0 means “don’t verify checksum”)

 SRC port  DST port

checksum length

DATA



Why Would Anyone Use UDP?

● Finer control over what data is sent and when 
● As soon as an application process writes into the socket 
● … UDP will package the data and send the packet 

● No delay for connection establishment  
● UDP just blasts away without any formal preliminaries 
● … which avoids introducing any unnecessary delays 

● No connection state 
● No allocation of buffers, sequence #s, timers … 
● … making it easier to handle many active clients at once 

● Small packet header overhead 
● UDP header is only 8 bytes



Popular Applications That Use UDP

● Some interactive streaming apps 
● Retransmitting lost/corrupted packets often pointless: 

by the time the packet is retransmitted, it’s too late 
● telephone calls, video conferencing, gaming… 
● Modern streaming protocols using TCP (and HTTP) 

● Simple query protocols like Domain Name System (DNS) 
● Connection establishment overhead would double cost 
● Easier to have application retransmit if needed

“Address for bbc.co.uk?”

“212.58.224.131”



TCP



Transmission Control Protocol (TCP)

● Reliable, in-order delivery (previously, but quick review) 

● Ensures byte stream (eventually) arrives intact 
● In the presence of corruption and loss 

● Connection oriented (today) 

● Explicit set-up and tear-down of TCP session 
● Full duplex stream-of-bytes service (today) 

● Sends and receives a stream of bytes, not messages 
● Flow control (previously, but quick review) 

● Ensures that sender doesn’t overwhelm receiver 
● Congestion control (next week) 

● Dynamic adaptation to network path’s capacity



Basic Components of Reliability

● ACKs 
● Can’t be reliable without knowing whether data has arrived 
● TCP uses byte sequence numbers to identify payloads 

● Checksums 
● Can’t be reliable without knowing whether data is corrupted 
● TCP does checksum over TCP and pseudoheader 

● Timeouts and retransmissions 
● Can’t be reliable without retransmitting lost/corrupted data 
● TCP retransmits based on timeouts and duplicate ACKs 
● Timeout based on estimate of RTT



Other TCP Design Decisions

● Sliding window flow control 
● Allow W contiguous bytes to be in flight 

● Cumulative acknowledgements 
● Selective ACKs (full information) also supported (ignore) 

● Single timer set after each payload is ACKed 
● Timer is effectively for the “next expected payload” 
● When timer goes off, resend that payload and wait 
● And double timeout period 

● Various tricks related to “fast retransmit” 
● Using duplicate ACKs to trigger retransmission



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



Segments and Sequence Numbers



TCP “Stream of Bytes” Service…

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Application @ Host A

Application @ Host B
B

yte 80

B
yte 80



… Provided Using TCP “Segments”

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment sent when: 
1. Segment full (Max Segment Size), 
2. Not full, but times out



TCP Segment

● IP packet 
● No bigger than Maximum Transmission Unit (MTU) 
● E.g., up to 1500 bytes with Ethernet 

● TCP packet 
● IP packet with a TCP header and data inside 
● TCP header ≥ 20 bytes long 

●  
TCP segment 
● No more than Maximum Segment Size (MSS) bytes 
● E.g., up to 1460 consecutive bytes from the stream 
● MSS = MTU – (IP header) – (TCP header)

IP Hdr
IP Data

TCP HdrTCP Data (segment)



Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number   
= 1st byte in segment = 

ISN + k

k bytes



Sequence Numbers

Host B

TCP Data

TCP Data

TCP  
HDR

TCP  
HDR

ACK sequence number  
= next expected byte 

= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number   
= 1st byte in segment = 

ISN + k

k



ACKing and Sequence Numbers

● Sender sends packet  
● Data starts with sequence number X 
● Packet contains B bytes 
● X, X+1, X+2, ….X+B-1 

● Upon receipt of packet, receiver sends an ACK 
●  If all data prior to X already received: 
● ACK acknowledges X+B (because that is next expected byte) 

● If highest contiguous byte received is smaller value Y 
● ACK acknowledges Y+1 
● Even if this has been ACKed before



Normal Pattern

● Sender: seqno=X, length=B 
● Receiver: ACK=X+B 
●  

Sender: seqno=X+B, length=B 
● Receiver: ACK=X+2B 
●  

Sender: seqno=X+2B, length=B 
● … 

● Seqno of next packet is same as last ACK field



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



Sliding Window Flow Control

● Advertised Window: W 
● Can send W bytes beyond the next expected byte 

● Receiver uses W to prevent sender from overflowing buffer 

● Limits number of bytes sender can have in flight



Advertised Window Limits Rate

● Sender can send no faster than W/RTT bytes/sec 

● Receiver only advertises more space when it has consumed old 
arriving data 

● In original TCP design, that was the sole protocol mechanism 
controlling sender’s rate 

● What’s missing?



Implementing Sliding Window

● Both sender & receiver maintain a window  
● Sender: not yet ACK’ed 
● Receiver: not yet delivered to application 

● Left edge of window: 
● Sender: beginning of unacknowledged data 
● Receiver: beginning of undelivered data 

● For the sender: 
● Window size = maximum amount of data in flight 

● For the receiver: 
● Window size = maximum amount of undelivered data



Sliding Window Summary

● Sender: window advances when new data ack’d 

● Receiver: window advances as receiving process consumes data 

● Receiver advertises to the sender where the receiver window 
currently ends (“righthand edge”) 
● Sender agrees not to exceed this amount 
● It makes sure by setting its own window size to a value that 

can’t send beyond the receiver’s righthand edge 



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero” 
6 bits reserved

Number of 4-byte 
words in TCP 
header; 
5 = no options



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG 
flag to indicate 
urgent data (not 
discussed further)



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



TCP Connection Establishment and Initial 
Sequence Numbers



Initial Sequence Number (ISN)

● Sequence number for the very first byte 
● E.g., Why not just use ISN = 0? 

● Practical issue 
● IP addresses and port #s uniquely identify a connection 
● Eventually, though, these port #s do get used again 
● … small chance an old packet is still in flight 

● TCP therefore requires changing ISN 
● initially set from 32-bit clock that ticks every 4 microseconds 
● now drawn from a pseudo random number generator (security) 

● To establish a connection, hosts exchange ISNs 
● How does this help?



Establishing a TCP Connection

● Three-way handshake to establish connection 
● Host A sends a SYN (open; “synchronize sequence numbers”) 
● Host B returns a SYN acknowledgment (SYN ACK) 
● Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells 
its ISN to the 
other host.



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG

See /usr/include/netinet/tcp.h on Unix Systems



Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5=20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG

A tells B it wants to open a connection…



Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window20B 0

Checksum Urgent pointer

Options (variable)

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags



Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data



What if the SYN Packet Gets Lost?

● Suppose the SYN packet gets lost 
● Packet is lost inside the network, or: 
● Server discards the packet (e.g., listen queue is full) 

● Eventually, no SYN-ACK arrives 
● Sender sets a timer and waits for the SYN-ACK 
● … and retransmits the SYN if needed 

● How should the TCP sender set the timer? 
● Sender has no idea how far away the receiver is 
● Hard to guess a reasonable length of time to wait 
● SHOULD (RFCs 1122 & 2988) use default of 3 seconds 
● Other implementations instead use 6 seconds



SYN Loss and Web Downloads

● User clicks on a hypertext link 
● Browser creates a socket and does a “connect” 
● The “connect” triggers the OS to transmit a SYN 

● If the SYN is lost… 
● 3-6 seconds of delay: can be very long 
● User may become impatient 
● … and click the hyperlink again, or click “reload” 

● User triggers an “abort” of the “connect” 
● Browser creates a new socket and another “connect” 
● Essentially, forces a faster send of a new SYN packet! 
● Sometimes very effective, and the page comes quickly



Tearing Down the Connection



Normal Termination, One Side At A Time

● Finish (FIN) to close and receive remaining bytes 
● FIN occupies one octet in the sequence space 

● Other host ack’s the octet to confirm 
● Closes A’s side of the connection, but not B’s 

● Until B likewise sends a FIN 
● Which A then acks

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B

FIN

A
CK

Timeout: 

Avoid reincarnation 
B will retransmit FIN  
if ACK is lost

Connection 
now half-closed

Connection 
now closed



Normal Termination, Both Together

● Same as before, but B sets FIN with their ack of A’s FIN
SY

N

SY
N

 A
CK

A
CK

D
at

a

FI
N

FIN
 + A

CK

A
CK

time
A

B

A
CK

Connection 
now closed

Timeout: 

Avoid reincarnation 
Can retransmit 
FIN ACK if ACK lost



Abrupt Termination

● A sends a RESET (RST) to B 
● E.g., because app. process on A crashed 

● That’s it 
● B does not ack the RST 
● Thus, RST is not delivered reliably 
● And: any data in flight is lost 
● But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T



TCP State Transitions

Data, ACK  
exchanges  
are in here



Reliability: TCP Retransmission



Timeouts and Retransmissions

● Reliability requires retransmitting lost data 

● Involves setting timer and retransmitting on timeout 

● TCP resets timer whenever new data is ACKed 
● Retx of packet containing “next byte” when timer goes off



Setting the Timeout Value

1

1

Timeout too long " inefficient

1

1

Timeout too short "  
duplicate packets 

RTT

Timeout

Timeout

RTT



RTT Estimation

● Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime−SendPacketTime
EstimatedRTT =α ×EstimatedRTT + (1−α)×SampleRTT
0 <α ≤1

E
st
im
at
ed
R
TT

Time

SampleRTT



Exponential Averaging Example

RTT

time

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT
Assume RTT is constant " SampleRTT = RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)



Problem: Ambiguous Measurements

● How do we differentiate between the real ACK, and ACK of the 
retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver

ACK
Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver



Karn/Partridge Algorithm

● Measure SampleRTT only for original transmissions 
● Once a segment has been retransmitted, do not use it for any 

further measurements 
● Computes EstimatedRTT using α = 0.875 

● Timeout value (RTO)  = 2 × EstimatedRTT 

● Use exponential backoff for repeated retransmissions 
● Every time RTO timer expires, set RTO ← 2·RTO 
● (Up  to maximum ≥ 60 sec) 

● Every time new measurement comes in (= successful original 
transmission), collapse RTO back to 2 × EstimatedRTT



This is all very interesting, but…..

● Implementations often use a coarse-grained timer 
● 500 msec is typical 

● So what? 
● Above algorithms are largely irrelevant 
● Incurring a timeout is expensive 

● So we rely on duplicate ACKs



Loss with cumulative ACKs

● Sender sends packets with 100B and seqnos.: 
● 100, 200, 300, 400, 500, 600, 700, 800, 900, … 

● Assume the fifth packet (seqno 500) is lost, but no others 

● Stream of ACKs will be: 
● 200, 300, 400, 500, 500, 500, 500,…



Loss with cumulative ACKs

● “Duplicate ACKs” are a sign of an isolated loss 
● The lack of ACK progress means 500 hasn’t been delivered 
● Stream of ACKs means some packets are being delivered 

● Therefore, could trigger resend upon receiving k duplicate ACKs 
● TCP uses k=3 

● We will revisit this in congestion control
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