Communication Networks Spring 2018

Q&A Session

Rüdiger Birkner Tobias Bühler https://comm-net.ethz.ch/

ETH Zürich August 6 2018 Old exam from 2016

3 hours instead of 2.5

Topics which we did not discuss this year

Security, SDN, ...

How do you guide IP packets from a source to the destination?

Essentially, there are three ways to compute valid routing state

	Intuition	Example
#1	Use tree-like topologies	Spanning-tree
#2	Rely on a global network view	Link-State SDN
#3	Rely on distributed computation	Distance-Vector BGP

Essentially, there are three ways to compute valid routing state

	Intuition	Example
#1	Use tree-like topologies	Spanning-tree
#2	Rely on a global network view	Link-State SDN
#3	Rely on distributed computation	Distance-Vector BGP

Distance-vector protocols are based on Bellman-Ford algorithm

Let $d_x(y)$ be the cost of the least-cost path known by x to reach y

Let $d_x(y)$ be the cost of the least-cost path known by x to reach y

Each node bundles these distances into one message (called a vector) that it repeatedly sends to all its neighbors

until convergence

Let $d_x(y)$ be the cost of the least-cost path known by x to reach y

Each node bundles these distances into one message (called a vector) that it repeatedly sends to all its neighbors

until convergence

Each node updates its distances based on neighbors' vectors:

 $d_x(y) = \min\{ c(x,v) + d_v(y) \}$ over all neighbors v

Whenever a router uses another one,

it will announce it an infinite cost

The technique is known as poisoned reverse

Internet routing comes into two flavors: *intra-* and *inter-domain* routing

inter-domain routing

Find paths between networks

intra-domain routing

Find paths within a network

inter-domain routing intra-domain routing

Find paths between networks

Internet

BGP is the routing protocol "glueing" the entire Internet together

BGP announcements carry complete path information instead of distances

Each AS appends itself to the path when it propagates announcements

There are 2 main business relationships today:

- customer/provider
- peer/peer

many less important ones (siblings, backups,...)

These policies are defined by constraining which BGP routes are *selected* and *exported*

which path to use?

which path to advertise?

which path to use? control outbound traffic which path to advertise?

Business relationships conditions *route selection*

For a destination *p*, prefer routes coming from

- customers over
- peers over route type
- providers

Selection

which path to use?

which path to advertise? control inbound traffic

Routes coming from peers and providers are only propagated to customers

On the wire, BGP is a rather simple protocol composed of four basic messages

typeused to...OPENestablish TCP-based BGP sessionsNOTIFICATIONreport unusual conditionsUPDATEinform neighbor of a new best route
a change in the best routeKEEPALIVEinform neighbor that the connection is alive

UPDATE

inform neighbor of a new best route a change in the best route

BGP UPDATEs carry an IP prefix together with a set of attributes

Attributes	Usage
NEXT-HOP	egress point identification
AS-PATH	loop avoidance outbound traffic control inbound traffic control
LOCAL-PREF	outbound traffic control
MED	inbound traffic control

Prefer routes...

with higher LOCAL-PREF

with shorter AS-PATH length

with lower MED

learned via eBGP instead of iBGP

with lower IGP metric to the next-hop

with smaller egress IP address (tie-break)

Each BGP router processes UPDATEs according to a precise pipeline

routing-table

Life of a BGP router is made of three consecutive steps

while true:

- receives routes from my neighbors
- select one best route for each prefix
- export the best route to my neighbors

An AS is more than just one router

BGP sessions come in two flavors

external BGP (eBGP) sessions connect border routers in different ASes

internal BGP (iBGP) connect the routers in the same AS

iBGP sessions are used to disseminate externally-learned routes internally

Assignment 1 - Internet Communication

Assignment 1 - Internet Communication

Link Communication and Network medium adapter

Accessing a website: DNS & HTTP

step 1	Open browser and enter the URL	<u>www.google.com</u>
step 2	Browser invokes DNS to resolve the URL into an IP	216.58.215.238
step 3	Browser creates a HTTP request to retrieve the website	GET / HTTP/1.1 Host: <u>www.google.com</u>

Accessing a website: DNS & HTTP

What if we do the DNS resolution ourselves?

step 1	Perform a DNS lookup	dig	www.google.com
	for the given URL		

step 2Open browser and
enter the IP address216.58.215.238

step 3Browser creates a HTTP requestGET / HTTP/1.1to retrieve the websiteHost: 216.58.215.238

In practice, multiple URLs can be mapped to the same IP

How does a web server receiving an HTTP request know, which website you want to access?

The host field tells the server which website it should serve

HTTP request:

GET / HTTP/1.1 Host: <u>www.google.com</u>

"one-to-one-of-many"

Important, discussed in lecture

Used for scalability, load-balancing (e.g. DNS root server)

Routing finds shortest-paths

Seamless replication

But, potential problems for stateful applications

"one-to-one"

Destination address uniquely identifies a single receiver

No replication

"one-to-many-of-many" ("many-to-many-of-many")

Not important for exam

E.g. useful to stream the same video to multiple receivers

Poor choice of IP subnets from our side

Indeed, 192.168.0.0/16 is a private subnet space normally not routed in the Internet

SRC MAC Address	DST MAC Address	SRC IP Address	DST IP Address
6a:00:02:49:a1:a0	11:05:ab:59:bb:02	192.168.11.1	192.168.8.2
6a:00:02:49:a1:a0	da:15:00:00:01:11	192.168.11.1	192.168.16.1
da:15:00:00:01:11	11:05:ab:59:bb:02	129.132.103.40	192.168.8.2
11:05:ab:59:bb:02	40:34:00:7a:00:01	192.168.8.2	192.168.15.254
11:05:ab:59:bb:02	ac:00:0a:aa:10:05	192.168.8.2	192.168.9.99
ac:00:0a:aa:10:05	01:05:3c:34:00:02	192.168.9.99	192.168.13.255
6a:00:02:49:a1:a0	da:15:00:00:01:11	192.168.11.1	192.168.8.1

SRC MAC Address	DST MAC Address	SRC IP Address	DST IP Address
6a:00:02:49:a1:a0	11:05:ab:59:bb:02	192.168.11.1	192.168.8.2
6a:00:02:49:a1:a0	da:15:00:00:01:11	192.168.11.1	192.168.16.1
da:15:00:00:01:11	11:05:ab:59:bb:02	129.132.103.40	192.168.8.2
11:05:ab:59:bb:02	40:34:00:7a:00:01	192.168.8.2	192.168.15.254
11:05:ab:59:bb:02	ac:00:0a:aa:10:05	192.168.8.2	192.168.9.99
ac:00:0a:aa:10:05	01:05:3c:34:00:02	192.168.9.99	192.168.13.255
6a:00:02:49:a1:a0	da:15:00:00:01:11	192.168.11.1	192.168.8.1

SRC MAC Address	DST MAC Address	SRC IP Address	DST IP Address
6a:00:02:49:a1:a0	11:05:ab:59:bb:02	192.168.11.1	192.168.8.2
6a:00:02:49:a1:a0	da:15:00:00:01:11	192.168.11.1	192.168.16.1
da:15:00:00:01:11	11:05:ab:59:bb:02	129.132.103.40	192.168.8.2
11:05:ab:59:bb:02	40:34:00:7a:00:01	192.168.8.2	192.168.15.254
11:05:ab:59:bb:02	ac:00:0a:aa:10:05	192.168.8.2	192.168.9.99
ac:00:0a:aa:10:05	01:05:3c:34:00:02	192.168.9.99	192.168.13.255
6a:00:02:49:a1:a0	da:15:00:00:01:11	192.168.11.1	192.168.8.1

Router interface MAC address

Dst 192.168.8.2 does not go over router => internal

SRC MAC Address	DST MAC Address	SRC IP Address	DST IP Address
6a:00:02:49:a1:a0	11:05:ab:59:bb:02	192.168.11.1	192.168.8.2
6a:00:02:49:a1:a0	da:15:00:00:01:11	192.168.11.1	192.168.16.1
da:15:00:00:01:11	11:05:ab:59:bb:02	129.132.103.40	192.168.8.2
11:05:ab:59:bb:02	40:34:00:7a:00:01	192.168.8.2	192.168.15.254
11:05:ab:59:bb:02	ac:00:0a:aa:10:05	192.168.8.2	192.168.9.99
ac:00:0a:aa:10:05	01:05:3c:34:00:02	192.168.9.99	192.168.13.255
6a:00:02:49:a1:a0	da:15:00:00:01:11	192.168.11.1	192.168.8.1

Router interface MAC address

Dst 192.168.8.2 does not go over router => internal

Dst 192.168.8.1 reaches router and has to be in the same subnet as 192.168.8.2

=> 192.168.8.1 is the IP of the router

DHCP (assignment 10 and book chapter 4)

Assignment uses 2 packets, book 4

Assignment simplifies the process slightly assumes only one DHCP server

The sender recognizes its response based on the transaction ID therefore not a problem that also the response is broadcasted

DHCP (assignment 10 and book chapter 4)

VLAN

Access link: part of only one VLAN

normally connects hosts with switches (to get "access")

Trunk link: **can** carry traffic for multiple VLANs normally connects switches to other switches or routers

The per-VLAN spanning tree still spans the **entire** network even if some of the switches do not have hosts in all VLANs => better optimized paths for hosts in one VLAN => ready for new hosts in the future

VLAN (spanning tree from the slides)

TCP Congestion Window

Additive Increase pseudo code from the slides:

CWND = CWND + 1/CWND

TCP Congestion Window

Additive Increase pseudo code from the slides:

CWND = CWND + 1/CWND

More precise computation:

$$CWND(t+1) = \begin{cases} CWND(t) + a & \text{if no congestion detected} \\ CWND(t) * b & \text{if congestion detected} \end{cases}$$

```
With a = MSS and b = 1/2
(t = current RTT)
```

TCP Congestion Window (assignment 8)

Question c): how much time elapsed between E and F?

TCP Congestion Window (assignment 8)

Question c): how much time elapsed between E and F?

=> depends on when F is exactly happening

TCP Congestion Window - diagrams

The presented diagrams do not capture all the details, e.g.

We will make sure that future question precisely define what the marked points represent. **Individual Questions**