
Communication Networks
Prof. Laurent Vanbever

Solution: Exercises week 7 – Internet Routing

Convergence (Exam Style Question)

A

B

C

D

1 1

1 2

Loopy or not?

Consider this simple network running OSPF as link-state rout-

ing protocol. Each link is associated with a weight that repre-

sents the cost of using it to forward packets. Link weights are

bi-directional.

Assume that routers A, B and D transit traffic for an IP desti-

nation connected to C and that link (B,C) fails. Which nodes

among A, B and D could potentially see their packets being

stuck in a transient forwarding loop? Which ones would not?

Solution: Nodes A and B could see their packets stuck in

a forwarding loop if B updates its forwarding table before A,

which is likely to happen as B would be the first to learn about

an adjacent link failure. On the other hand, D would not see

any loop as it uses its direct link with C to reach any destination

connected beyond it.

Assume now that the network administrator wants to take

down the link (B,C), on purpose, for maintenance reasons. To

avoid transient issues, the administrator would like to move

away all traffic from the link before taking it down and this,

without creating any transient loop (if possible). What is the

minimum sequence of increased weights setting on link (B,C)
that would ensure that no packet destined to C is dropped?

Solution: One example of a minimum sequence of weight

settings is [1, 3, 5].

Note: The problem highlighted above happens because B shifts

traffic to A before A shifts traffic to D, hence creating a forward-

ing loop. By setting the (B,C) link weight to 3, (only) A shifts

from using (A, B,C) to using (A,D,C). Once A has shifted, it is

safe to shift B by setting the link weight to 5 (or higher). Once

B has shifted has well, the link can be safely torn down.



Exam Question

For the following statements, decide if they are true or false.

Motivate your decision. These questions are directly taken

from the Communication Networks final exam of 2016.

a) Consider a positively weighted graph G. Applying the

Bellman-Ford (used by distance-vector protocols) or Dijk-

stra (used by link-state protocols) algorithm on G would

lead to the same forwarding state.

Solution: True. Both solve the shortest-path problem.

b) Link-state protocols (such as OSPF) are guaranteed to

compute loop-free forwarding state as long as the link-

state databases are consistent on all routers.

Solution: True. However, they can experience transient

loops while it isn’t the case.

c) Link-state protocols (such as OSPF) require routers to

maintain less state than distance-vector protocols (such

as RIP).

Solution: False. Link-state protocols require routers

to maintain the entire topology in memory (Link-State

database). Distance-vector protocols only need to main-

tain the costs to reach each prefix.

d) Poisoned reverse solves the problem of count-to-infinity.

Solution: False. The problem is still there it is mitigated

by having a small infinity value.

e) Consider a positively weighted graph G. Multiplying all

link weights by 2 would change the all-pairs shortest

paths computed by the Dijkstra algorithm on G.

Solution: False. Multiplying by a constant factor keeps

the ranking between the paths constant.

f) Consider a positively weighted graph G. Adding 1 to all

link weights would change the all-pairs shortest paths

computed by the Dijkstra algorithm on G.

Solution: True. Longer paths will see a bigger increase

than shorter ones.



Traffic Engineering

$
$$$

$$$

82.130.64.0/21

82.130.64.0/21

ETH is connected to three providers with different

costs.

Assume that ETH has only one prefix: 82.130.64.0/21. As

depicted on the left, the ETH network is connected to three

providers (Swisscom, Deutsche Telekom and Switch) and the

providers are interconnected with each other. The contract

with Swisscom is the cheapest one (indicated by the dollar sym-

bols). For this reason, ETH wants to receive all the incoming

traffic over the Swisscom link and therefore announces its pre-

fix only to Swisscom.

a) Do you think that is a good configuration? What happens

if the link between ETH and Swisscom fails?

Solution: Not a good solution. If the link fails, ETH will

no longer receive any traffic. ETH is no longer reachable

from other networks.

b) To improve the connectivity in case of a link failure be-

tween ETH and Swisscom, ETH wants to optimize its

announcements. Write down the prefixes which ETH

announces to Swisscom, Deutsche Telekom and Switch.

During normal operation (no link failure) ETH should still

receive all incoming traffic over the Swisscom link.

Solution:

To Swisscom: 82.130.64.0/22 and 82.130.68.0/22

(other splits are also possible)

To Deutsche Telekom: 82.130.64.0/21

To Switch: 82.130.64.0/21

c) After further investigations, ETH decides that only traf-

fic towards 82.130.68.0/23 has to be received over the

Swisscom link. All the other traffic can enter over any of

the providers. Which prefixes do you have to announce

to achieve this traffic distribution?

Solution:

To Swisscom: 82.130.68.0/23 and 82.130.64.0/21

To Deutsche Telekom: 82.130.64.0/21

To Switch: 82.130.64.0/21



Convergence with Poisoned Reverse

1

1

X Z

Y

1

A

1

A 1 ∞

dest. via
A Y Z

∞

A 2 3

dest. via
X Z

A 2 3

dest. via
X Y

Consider the network on the left which uses distance vector

routing with poisoned reverse. Each link is associated with a

weight that represents the cost of using it to forward packets.

Link weights are bi-directional.

Assume that the link between X and A fails (as shown in the

figure) and use the table below to show the first 8 steps of

the convergence process. How many steps does it take until

the network has converged to a new forwarding state? Explain

your observations.

Solution: The network does not converge as the maximum

link weight is increased by one in each round ("count to infin-

ity problem"). Poisoned reverse does not solve the problem

of counting to infinity if three or more nodes are involved.

One possible workaround is to define ∞ as a small value (e.g.

∞ := 16).

Solution:

X Y Z

dst=A via A via Y via Z via X via Z via X via Y

t = 0 before the failure 1 ∞ ∞ 2 3 2 3

t = 1 after X sends its vector ? ∞ ∞ ∞ 3 ∞ 3

t = 2 after Y sends its vector ? 4 ∞ ∞ 3 ∞ ∞

t = 3 after Z sends its vector ? 4 ∞ ∞ ∞ ∞ ∞

t = 4 after X sends its vector ? 4 ∞ ∞ ∞ 5 ∞

t = 5 after Y sends its vector ? ∞ ∞ ∞ ∞ 5 ∞

t = 6 after Z sends its vector ? ∞ ∞ ∞ 6 5 ∞

t = 7 after X sends its vector ? ∞ ∞ ∞ 6 ∞ ∞

t = 8 after Y sends its vector ? 7 ∞ ∞ 6 ∞ ∞

Add the distance vectors to this table


