
Communication Networks

Spring 2018

ETH Zürich (D-ITET)

Laurent Vanbever

May 14 2018

Materials inspired from Scott Shenker & Jennifer Rexford

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

Unterrichtsbeurteilung

aka course evaluation

Please fill in the survey!

You should have received the link by email

Two weeks ago on

Communication Networks

TCP Congestion Control

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

Congestion control differs from flow control

both are provided by TCP though

Flow control

Congestion control

prevents one fast sender from

prevents a set of senders from

overloading the network

overloading a slow receiver

Congestion Window

CWND

How many bytes can be sent

without overflowing the routers?

Receiving Window

RWND

How many bytes can be sent

without overflowing the receiver buffer?

based on network conditions

based on the receiver input

Sender Window minimum(CWND, RWND)

The sender adapts its sending rate

based on these two windows

The 2 key mechanisms of Congestion Control

detecting

congestion

reacting to

congestion

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

it depends on the problem we are solving…

TCP approach is to gently increase when not congested

and to rapidly decrease when congested

What increase/decrease function

should we use?

question

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

#1

Initially, you want to quickly get a first-order estimate

of the available bandwidth

Increase cwnd = 1

cwnd += 1

initially

policy

Intuition Start slow but rapidly increase

until a packet drop occurs

upon receipt of an ACK

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

#2

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#3

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

Initially:

 cwnd = 1
 ssthresh = infinite
New ACK received:
 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
Timeout:

 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

TCP congestion control in less than 10 lines of code

Time

cwnd

Timeout

Slow 
Start

AIMD

ssthresh

Timeout

Slow 
Start

Slow 
Start

AIMD

The congestion window of a TCP session typically

undergoes multiple cycles of slow-start/AIMD

Going back all the way back to 0 upon timeout

completely destroys throughput

solution Avoid timeout expiration…

which are usually >500ms

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it

this is known as a “fast retransmit”

TCP automatically resends a segment

after receiving 3 duplicates ACKs for it

this is known as “fast recovery”

After a fast retransmit, TCP switches back to AIMD,

without going all way the back to 0

Initially:
 cwnd = 1
 ssthresh = infinite
New ACK received:

 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
 dup_ack = 0
Timeout:
 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

TCP congestion control (almost complete)

Duplicate ACKs received:

 dup_ack ++;
 if (dup_ack >= 3):
 /* Fast Recovery */
 ssthresh = cwnd/2
 cwnd = ssthresh

Initially:
 cwnd = 1
 ssthresh = infinite
New ACK received:

 if (cwnd < ssthresh):
 /* Slow Start*/
 cwnd = cwnd + 1
 else:
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd
 dup_ack = 0
Timeout:
 /* Multiplicative decrease */
 ssthresh = cwnd/2
 cwnd = 1

dup_ack = 0

Duplicate ACKs received:

 dup_ack ++;
 if (dup_ack >= 3):
 /* Fast Recovery */
 ssthresh = cwnd/2
 cwnd = ssthresh

Time

cwnd

Timeout

Slow 
Start

AIMD

Timeout

Slow 
Start

Slow 
Start

AIMD
AIMD

3 dups ACKs

Congestion control makes TCP throughput

look like a “sawtooth”

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We now have completed the transport layer (!)

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

This week on

Communication Networks

WebDNS

google.ch 172.217.16.131 http://www.google.ch

http://google.ch

WebDNS

google.ch 172.217.16.131

http://google.ch

Internet has one global system for

addressing hosts

naming hosts

IP

DNS

by design

by "accident", an afterthought

Internet has one global system for

naming hosts DNS

by "accident", an afterthought

Using Internet services can be divided

into four logical steps

The application invokes transport protocol to

establish an app-to-app connection

step 4

A person has name of entity

she wants to access

step 1 www.ethz.ch

She invokes an application

to perform the task

step 2 Chrome

The application invokes DNS

to resolve the name into an IP address

step 3 129.132.19.216

129.132.19.216

IP addressname

www.ethz.ch

DNS

The DNS system is a distributed database

which enables to resolve a name into an IP address

http://www.ethz.ch

In practice,

names can be mapped to more than one IP

129.132.19.216

IP addressname

www.ethz.ch

DNS

www.google.ch 195.176.255.241

195.176.255.245

(load-balancing)

http://www.ethz.ch
http://www.google.ch

129.132.19.216

IP addressname

www.ethz.ch

DNS

www.vanbever.eu

www.routeur.be

188.165.240.60

188.165.240.60

In practice,

IPs can be mapped by more than one name

http://www.ethz.ch
http://vanbever.eu
http://routeur.be

initially

How does one resolve a name into an IP?

all host to address mappings

were in a file called hosts.txt

in /etc/hosts

problem scalability in terms of query load & speed

management

consistency

availability

When you need…

you add… a hierarchical structure

When you need…

you add… a layer of indirection

more flexibility,

more scalability,

To scale,

DNS adopt three intertwined hierarchies

naming structure

management

infrastructure

hierarchy of addresses

https://www.ee.ethz.ch/de/departement/

hierarchy of authority

over names

hierarchy of DNS servers

https://www.ee.ethz.ch/de/departement/

naming structure addresses are hierarchical

https://www.ee.ethz.ch/de/departement/

https://www.ee.ethz.ch/de/departement/

root

com org net edu gov mil chbe de fr + many more

“.”

Top Level Domain (TLDs) sit at the top

root

com org net edu gov mil chbe de fr

“.”

ethz + many moreepfl nzz

Domains are subtrees

root

com org net edu gov mil chbe de fr

“.”

ethz

www ee infk + many more

epfl nzz

A name, e.g. ee.ethz.ch, represents

a leaf-to-root path in the hierarchy

http://ee.ethz.ch

management hierarchy of authority

over names

root

com org net edu gov mil chbe de fr

ethz

www ee infk

epfl nzz

The DNS system is

hierarchically administered

com org net edu gov mil be de fr

managed by IANA (*)

(*) see http://www.iana.org/domains/root/db

ch

ethz

www ee infk

epfl nzz

root

http://www.iana.org/domains/root/db

root

com org net edu gov mil be de fr

ethz

www ee infk

epfl nzz

ch

managed by The Swiss Education & Research Network (*)

(*) see https://www.switch.ch/about/id/

root

com org net edu gov mil be de frch

www ee infk

nzz
managed by

ethz
ETH Zürich
Informatikdienste ICT-Networks

Hierarchical administration means

that name collision is trivially avoided

infrastructure hierarchy of DNS servers

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

The DNS infrastructure is

hierarchically organized

com org net edu gov mil be de fr

(*) see http://www.root-servers.org/

ch

ethz

www ee infk

epfl nzz

root

13 root servers (managed professionally)

serve as root (*)

http://www.root-servers.org/

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

root-servers.net

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

m.

VeriSign, Inc.

University of Southern California

Cogent Communications

University of Maryland

NASA

Internet Systems Consortium

US Department of Defense

US Army

Netnod

VeriSign, Inc.

RIPE NCC

ICANN

WIDE Project

To scale root servers,

operators rely on BGP anycast

Routing finds shortest-pathsIntuition

This enables seamless replications of resources

If several locations announce the same prefix,

then routing will deliver the packets to  
the “closest” location

AS10

AS20 AS30

AS40

AS50

 129.132.0.0/16

 Path: 30

 129.132.0.0/16

 Path: 50

IP traffic IP traffic

193.0.14.129
193.0.14.129

Do you see any problems in

performing load-balancing this way?

Instances of the k-root server (*) are hosted

in more than 40 locations worldwide

(*) see k.root-servers.org

http://k.root-servers.org

Two of these locations are in Switzerland:

in Zürich and in Geneva

Swiss Internet Exchange

ns1.ch-zrh.k.ripe.net

CERN

ns1.ch-gva.k.ripe.net

http://ns1.ch-zrh.k.ripe.net
http://ns1.ch-gva.k.ripe.net

All locations announce 193.0.14.0/23 in BGP,

with 193.0.14.129 being the IP of the server

Do you mind guessing which one we use, here… in Zürich?

Two of these locations are in Switzerland:

in Zürich and in Geneva

Each instance receives up to 70k queries per second

summing up to more than 4 billions queries per day

root

ethz

www ee infk

epfl nzz

com org net edu gov mil be de frch

TLDs server are also managed professionally

by private or non-profit organization

The bottom (and bulk) of the hierarchy is

managed by Internet Service Provider or locally

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

Every server knows the address of the root servers (*)

required for bootstrapping the systems

(*) see https://www.internic.net/domain/named.root

https://www.internic.net/domain/named.root

com org net edu gov mil be de frch

root

Each root server knows

the address of all TLD servers

ch. 172800 IN NS a.nic.ch.
ch. 172800 IN NS b.nic.ch.
ch. 172800 IN NS c.nic.ch.
ch. 172800 IN NS d.nic.ch.
ch. 172800 IN NS e.nic.ch.
ch. 172800 IN NS f.nic.ch.
ch. 172800 IN NS h.nic.ch.

lvanbever:~$ dig @a.root-servers.net ch.

From there on,

each server knows the address of all children

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

Any .ch DNS server knowns

the addresses of all sub-domains

To scale,

DNS adopt three intertwined hierarchies

naming structure

management

infrastructure

addresses are hierarchical

https://www.ee.ethz.ch/de/departement/

hierarchy of authority

over names

hierarchy of DNS servers

https://www.ee.ethz.ch/de/departement/

To ensure availability, each domain must have

at least a primary and secondary DNS server

DNS queries can be load-balanced

across the replicas

Ensure name service availability

as long as one of the servers is up

On timeout, client use alternate servers

exponential backoff when trying the same server

Overall, the DNS system is highly

scalable, available, and extensible

scalable

available

extensible

#names, #updates, #lookups, #users,

but also in terms of administration

domains replicate independently

of each other

any level (including the TLDs)

can be modified independently

Provide X with the name and IP of your DNS servers

e.g., [ns1.next-startup.ch,129.132.19.253]

You register next-startup.ch at a registrar X

e.g. Swisscom or GoDaddy

You set-up a DNS server @129.132.19.253

define A records for www, MX records for next-startup.ch…

You’ve founded next-startup.ch and want to host it

yourself, how do you insert it into the DNS?

http://ns1.next-startup.ch
http://next-startup.ch
http://next-startup.ch

Using DNS relies on two components

resolver software local DNS server

usually, near the endhoststrigger resolution process

configured statically (resolv.conf)

dynamically (DHCP)or

send request to local DNS server

gethostbyname()

DNS query and reply uses UDP (port 53),

reliability is implemented by repeating requests (*)

(*) see Book (Section 5)

A DNS server stores Resource Records

composed of a (name, value, type, TTL)

MX domain

CNAME alias

NS domain

A hostname

Records Name Value

IP address

DNS server name

Mail server name

canonical name

PTR IP address corresponding hostname

DNS resolution can either be

recursive or iterative

When performing a recursive query,

the client offload the task of resolving to the server

root	servers

.edu	servers

nyu.edu		
servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

root	
DNS	server

.edu	servers

nyu.edu		
servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

root	
DNS	server

.edu	servers

nyu.edu		
servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

root	
DNS	server

.edu	servers

nyu.edu		servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

When performing a iterative query, the server  
only returns the address of the next server to query

root	
DNS	server

.edu	servers

nyu.edu		servers
DNS	client  
(me.ee.ethz.ch)

DNS	server
local

root	
DNS	server

.edu	servers

nyu.edu		servers

Where is .edu?

Where is www.nyu.edu?

Where is nyu.edu?
DNS	server
local

DNS	client  
(me.ee.ethz.ch)

To reduce resolution times,

DNS relies on caching

Authoritative servers associate a lifetime to each record

Time-To-Live (TTL)

DNS servers cache responses to former queries

and your client and the applications (!)

DNS records can only be cached for TTL seconds

after which they must be cleared

As top-level servers rarely change & popular website

visited often, caching is very effective (*)

9% of lookups are unique

Top 10% of names account for 70% of lookups

Limit cache hit rate to 91%

Practical cache hit rates ~75%

(*) see https://pdos.csail.mit.edu/papers/dns:ton.pdf

https://pdos.csail.mit.edu/papers/dns:ton.pdf

WebDNS

http://www.google.ch

The Web as we know it was founded in ~1990,

by Tim Berners-Lee, physicist at CERN

provide distributed access to data

Tim Berners-Lee Photo: CERN

The World Wide Web (WWW):

a distributed database of “pages”

linked together via the

Hypertext Transport Protocol (HTTP)

His goal:

The Web was and still is so successful as

it enables everyone to self-publish content

People weren’t looking for technical perfection

little interest in collaborative or idealistic endeavor

Self-publishing on the Web is easy, independent & free

and accessible, to everyone

People essentially want to make their mark

and find something neat…

The WWW is made of

three key components

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

We’ll focus on

its implementation

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

A Uniform Resource Locator (URL)

refers to an Internet ressource

protocol://hostname[:port]/directory_path/resource

protocol://hostname[:port]/directory_path/resource

HTTP(S)

FTP

SMTP…

protocol://hostname[:port]/directory_path/resource

DNS Name

IP address

protocol://hostname[:port]/directory_path/resource

default to protocol’s standard

HTTP:80, HTTPs:443

protocol://hostname[:port]/directory_path/resource

identify the resource

on the destination

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

HTTP is a rather simple

synchronous request/reply protocol

HTTP is text-based (ASCII)

human readable, easy to reason about

HTTP is layered over a bidirectional byte stream

almost always TCP

HTTP is stateless

it maintains no info about past client requests

PerformanceProtocol

PerformanceProtocol

HTTP clients make request to the server

method URL version<sp> <cr><lf><sp>

…

body

HTTP

request header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

method URL version<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

method GET return resource

HEAD return headers only

POST send data to server (forms)

URL relative to server (e.g., /index.html)

version 1.0, 1.1, 2.0

HTTP clients make request to the server

method URL version<sp> <cr><lf><sp>

…

body

HTTP

request header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Request headers are of variable lengths,

but still, human readable

Uses Authorization info

Acceptable document types/encoding

From (user email)

If-Modified-Since

Referrer (cause of the request)

User Agent (client software)

HTTP servers answers to clients’ requests

version status phrase<sp> <cr><lf><sp>

…

body

HTTP

response header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

version status phrase<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Status 1XX

2XX

3XX

4XX

5XX

3 digit response code reason phrase

informational

success

redirection

client error

server error

200 OK

301 Moved Permanently

303 Moved Temporarily

304 Not Modified

404 Not Found

505 Not Supported

version status phrase<sp> <cr><lf><sp>

…

body

header field name: value <cr><lf>

header field name: value <cr><lf>

<cr><lf>

Like request headers, response headers are of

variable lengths and human-readable

Uses Location (for redirection)

Allow (list of methods supported)

Content encoding (e.g., gzip)

Content-Length

Content-Type

Expires (caching)

Last-Modified (caching)

HTTP is a stateless protocol,

meaning each request is treated independently

advantages disadvantages

server-side scalability

failure handling is trivial

some applications need state!

(shopping cart, user profiles, tracking)

How can you maintain state in a stateless protocol?

HTTP makes the client maintain the state.

This is what the so-called cookies are for!

client stores small state

on behalf of the server X

client sends state

in all future requests to X

can provide authentication

telnet google.ch 80
 
GET / HTTP/1.1
Host: www.google.ch

request

answer HTTP/1.1 200 OK
Date: Sun, 01 May 2016 14:10:30 GMT
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Server: gws 

Set-Cookie:
NID=79=g6lgURTq_BG4hSTFhEy1gTVFmSncQVsy
TJI260B3xyiXqy2wxD2YeHq1bBlwFyLoJhSc7jmcA
6TlFIBY7-
dW5lhjiRiQmY1JxT8hGCOtnLjfCL0mYcBBkpk8X4
NwAO28; expires=Mon, 31-Oct-2016 14:10:30
GMT; path=/; domain=.google.ch; HttpOnly

browser
will relay

this value
in following

requests

http://www.google.ch

PerformanceProtocol

Performance goals vary depending

on who you ask

User Content providerNetwork

operators

fast downloads

high availability

happy users

cost-effective  
infrastructure

no overloadwish

Improve HTTP to

compensate for

TCP weakspots

Caching and Replication
solution

Improve HTTP to

compensate for

TCP weakspots

solution

User

fast downloads

high availability

wish

Client Server
SYN

SYN/ACK

ACK + HTTP GET

...

Establish
connection

Request
response

Client
request

Close connection

Relying on TCP forces a HTTP client to

open a connection before exchanging anything

TCP establishment

HTTP request/response

Most Web pages have multiple objects,

naive HTTP opens one TCP connection for each…

Fetching n objects requires ~2n RTTs

R1
R2 R3

T1

T2 T3

One solution to that problem is to use

multiple TCP connections in parallel

User

Network operator

Content provider

Happy!

Happy!

Not Happy!

Why?

Another solution is to use persistent connections

across multiple requests, default in HTTP/1.1

Allow TCP to learn more accurate RTT estimate

and with it, more precise timeout value

Avoid overhead of connection set-up and teardown

clients or servers can tear down the connection

Allow TCP congestion window to increase

and therefore to leverage higher bandwidth

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

Yet another solution is to pipeline requests & replies

asynchronously, on one connection

batch requests and responses to  
reduce the number of packets

multiple requests can be packed  
into one TCP segment

Considering the time to retrieve n small objects,

pipelining wins

one-at-a-time

M concurrent

persistent

pipelined

RTTS

~2n

~2n/M

~n+1

2

Considering the time to retrieve n big objects,

there is no clear winners as bandwidth matters more

RTTS

~n * avg. file size

bandwidth

(*) see https://mobiforge.com/research-analysis/the-web-is-doom

Today, the average webpage size is 2.3 MB

as much as the original DOOM game…

https://mobiforge.com/research-analysis/the-web-is-doom

(*) see https://mobiforge.com/research-analysis/the-web-is-doom

Top web sites have decreased in size though

because they care about TCP performance

https://mobiforge.com/research-analysis/the-web-is-doom

User Content providerNetwork

operators

happy users

cost-effective  
infrastructure

no overloadwish

Caching and Replicationsolution

Caching leverages the fact that

highly popular content largely overlaps

Just think of how many times

you request the Facebook logo

per day

how often it actually changes

vs

Caching it save time for your browser

and decrease network and server load

Yet, a significant portion of

the HTTP objects are “uncachable"

dynamic data

scripts

cookies

SSL

advertising

Examples stock prices, scores, ...

results based on parameters

results may be based on passed data

cannot cache encrypted data

wants to measure # of hits ($$$)

To limit staleness of cached objects,

HTTP enables a client to validate cached objects

Client conditionally requests a ressources

using the “if-modified-since” header in the HTTP request

Server compares this against “last modified” time

of the resource and returns:

Not Modified if the resource has not changed

OK with the latest version

Server hints when an object expires (kind of TTL)

as well as the last modified date of an object

Caching can and is performed at different locations

client

close to the client

close to the destination

forward proxy

Content Distribution Network (CDN)

reverse proxy

browser cache

Many clients request the same information

clients

request

This increases servers and network’s load,

while clients experience unnecessary delays

clients

request

Reverse proxies cache documents close to servers,

decreasing their load

clients

request

reverse

proxy

This is typically done by

content provider

Forward proxies cache documents close to clients,

decreasing network traffic, server load and latencies

forward

proxies
This is typically done by

ISPs or enterprises

Content providerNetwork

operators

happy users

cost-effective  
infrastructure

no overloadwish

Caching and Replication
solution

The idea behind replication is to duplicate

popular content all around the globe

Places content closer to clients

only way to beat the “speed-of-light”

Spreads load on server

e.g., across multiple data-centers

Helps speeding up uncachable content

still have to pull it, but from closer

The problem of CDNs is to direct and serve

your requests from a close, non-overloaded replica

BGP Anycast

advertise the same IP prefix
from different locations

avoided in practice,
any idea why?

DNS-based

returns ≠ IP addresses

based on

client geo-localization

server load

http://wwwnui.akamai.com/gnet/globe/index.html

Akamai is one of the largest CDNs in the world,

boasting servers in more than 20,000 locations

http://wwwnui.akamai.com/gnet/globe/index.html

Akamai uses a combination of

pull caching

push replication

direct result of clients requests

when expecting high access rate

together with some dynamic processing

dynamic Web pages, transcoding,…

“Akamaizing” content is easily done by modifying

content to reference the Akamai’s domains

Akamai creates domain names for each client

a128.g.akamai.net for cnn.com

Client modifies its URL to refer to Akamai’s domain

http://www.cnn.com/image-of-the-day.gif

becomes  
http://a128.g.akamai.net/image-of-the-day.gif

Requests are now sent to the CDN infrastructure

http://cnn.com
http://a128.g.akamai.net/image-of-the-day.gif

Communication Networks

Spring 2018

ETH Zürich (D-ITET)

Laurent Vanbever

May 14 2018

nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

