
Communication Networks

Spring 2018

ETH Zürich

May 7 2018

Tobias Bühler, TA

http://comm-net.ethz.ch/

Thomas Holterbach, TA

Maximilian Schütte, TA

Alexander Dietmüller, TA

Last week on

Communication Networks

TCP Congestion Control

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

Congestion control differs from flow control

both are provided by TCP though

Flow control

Congestion control

prevents one fast sender from

prevents a set of senders from

overloading the network

overloading a slow receiver

Congestion Window

CWND

How many bytes can be sent

without overflowing the routers?

Receiving Window

RWND

How many bytes can be sent

without overflowing the receiver buffer?

based on network conditions

based on the receiver input

Sender Window minimum(CWND, RWND)

The sender adapts its sending rate

based on these two windows

The 2 key mechanisms of Congestion Control

detecting

congestion

reacting to

congestion

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

Detecting losses can be done using ACKs or timeouts,

the two signal differ in their degree of severity

duplicated ACKs mild congestion signal

timeout severe congestion signal

multiple consequent losses

packets are still making it

detecting

congestion

reacting to

congestion

The 2 key mechanisms of Congestion Control

it depends on the problem we are solving…

TCP approach is to gently increase when not congested

and to rapidly decrease when congested

What increase/decrease function

should we use?

question

Congestion control aims at

solving three problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

#1

Initially, you want to quickly get a first-order estimate

of the available bandwidth

Increase cwnd = 1

cwnd += 1

initially
policy

Intuition Start slow but rapidly increase

until a packet drop occurs

upon receipt of an ACK

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

#2

AIAD

AIMD

MIAD

MIMD

increase

behavior

decrease

behavior

gentle gentle

gentle aggressive

aggressive gentle

aggressive aggressive

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#3

A’s throughput

B’s throughput

1

1

efficiency line

fairness line

AIMD converge to fairness and efficiency,

it then fluctuates around the optimum (in a stable way)

Time

cwnd

Timeout

Slow 
Start

AIMD

Timeout

Slow 
Start

Slow 
Start

AIMD
AIMD

3 dups ACKs

Congestion control makes TCP throughput

look like a “sawtooth”

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link

We now have completed the transport layer (!)

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

This week on

Communication Networks

Python and Git 
tutorial

Reliable Transport ProjectRouting Project

Recap, demo  
and final results

Introduction 
and demo

Python and Git 
tutorial

Reliable Transport ProjectRouting Project

Recap, demo  
and final results

Introduction 
and demo

Communication Networks 2018
Routing Project

Recap

73%

Proportion of valid BGP paths
in your mini-Internet

*From 15 traceroutes launched
between random pairs of ASes

Your mini-Internet works!

and common services
can run on top of it

For this project, you basically did what an
actual network operator has to do

Including debugging and monitoring
your configuration and connectivity

For this project, you basically did what an
actual network operator has to do

Including debugging and monitoring
your configuration and connectivity

Looking glass Measurement platform

There was often multiple ways
to answer the questions

There was often multiple ways
to answer the questions

and we found some interesting answers

Enabling authentication in OSPF

Group BGP neighbors to simplify configuration

Multiple valid answers for question 3.3

More specific advertisements AS path prepending

How we have built the mini-Internet

VM2

VM3

VM1
between VMS:

192.168.56.0/24

How we have built the mini-Internet

VM2

VM3

VM1
between VMS:

192.168.56.0/24

How we have built the mini-Internet

VM2

VM3

VM1
between VMS:

192.168.56.0/24

How we have built the mini-Internet

VM2

VM3

VM1
between VMS:

192.168.56.0/24

How we have built the mini-Internet

VM2

VM3

VM1
between VMS:

192.168.56.0/24

How we have built the mini-Internet

VM2

VM3

VM1
between VMS:

192.168.56.0/24

How we have built the mini-Internet

VM2

VM3

VM1
between VMS:

192.168.56.0/24

How we have built the mini-Internet

VM2

VM3

VM1
between VMS:

192.168.56.0/24

Communication Networks 2018
Routing Project

Except the grades within ~2weeks from now

Python and Git 
tutorial

Reliable Transport ProjectRouting Project

Recap, demo  
and final results

Introduction 
and demo

recover from packet loss

and reordering

Implement your own Reliable Transport Protocol

recover from packet loss

and reordering

Implement your own Reliable Transport Protocol

Support for Selective Repeat

Fast retransmission after repeated ACKs

Support for Selective Acknowledgements (SACK)

SACK contains blocks of correctly received segments

Simple Go-Back-N implementation

Retransmit all packets after a timeout

Part 1

Part 2

Part 3

Let’s see how the final sender and receiver  
should look like

24 bits

1 7 16

Type Options Segment Length

Sequence Number WindowHeader Length

Mandatory

header

Payload

The header of our Go-Back-N protocol

is 6 bytes long

24 bits

1 7 16

Type Options Segment Length

Sequence Number WindowHeader Length

Mandatory

header

0 = DATA segment

1 = ACK segment

The header of our Go-Back-N protocol

is 6 bytes long

24 bits

1 7 16

Type Options Segment Length

Sequence Number WindowHeader Length

Mandatory

header

0 = no SACK support

1 = SACK support

The header of our Go-Back-N protocol

is 6 bytes long

24 bits

1 7 16

Type Options Segment Length

Sequence Number WindowHeader Length

Mandatory

header

Length of the payload. Normally, 64 bytes.  
Only last segment could be smaller

The header of our Go-Back-N protocol

is 6 bytes long

24 bits

1 7 16

Type Options Segment Length

Sequence Number WindowHeader Length

Mandatory

header

Total length of the header.  
In bytes

The header of our Go-Back-N protocol

is 6 bytes long

24 bits

1 7 16

Type Options Segment Length

Sequence Number WindowHeader Length

Mandatory

header

In DATA: segment sequence number. Starts at 0  
In ACK: next expected in-sequence segment

The header of our Go-Back-N protocol

is 6 bytes long

24 bits

1 7 16

Type Options Segment Length

Sequence Number WindowHeader Length

Mandatory

header

Sender respectively receiver window size.  
In number of segments

The header of our Go-Back-N protocol

is 6 bytes long

NBITS

maximum

overflow

application

examples

Sequence number overflow

assuming NBITS=3: 2NBITS - 1 = 7

controls the maximum sequence number

… 5, 6, 7, 0, 1, 2, …

NBITS

maximum

overflow

application

examples
ACK number, SACK header blocks,
retransmission, …

Sequence number overflow

Sent segments:

Receiver behavior:

1 - 1 1 1 1Sent ACKs:

Retransmission:

Out-or-order segments 
are dropped

0 1 2 3 4 5

0 - 2 3 4 5

The Go-Back-N sender waits for a timeout

before segments are retransmitted

Sent segments:

Receiver behavior:

1 - 1 1 1 1Sent ACKs:

Retransmission:

timeout

1 2 3 4 5

Out-or-order segments 
are dropped

0 1 2 3 4 5

0 - 2 3 4 5

The Go-Back-N sender waits for a timeout

before segments are retransmitted

0 - 2 3 4 5

Sent segments:

Receiver behavior:

1 - 1 1 1 1Sent ACKs:

Retransmission:

0 1 2 3 4 5

Out-or-order segments 
are buffered

Selective Repeat can increase  
the performance

0 - 2 3 4 5

Sent segments:

Receiver behavior:

1 - 1 1 1 1Sent ACKs:

Retransmission:

timeout

1 2 3 4 5

0 1 2 3 4 5

Out-or-order segments 
are buffered

 1

3 duplicate  
ACKs

Selective Repeat can increase  
the performance

0 - 2 3 4 5

Sent segments:

Receiver behavior:

1 - 1 1 1 1 6Sent ACKs:

Retransmission:

0 1 2 3 4 5 1

 1

3 duplicate  
ACKs

Selective Repeat can increase  
the performance

timeout

1 2 3 4 5

24 bits

1 7 16

Type Options Segment Length

Sequence Number WindowHeader Length

Block Length Left edge 1st block

Padding

Padding

Left edge 2nd block

Left edge 3rd block

Length 1st block

Length 2nd block

Length 3rd block

Mandatory

header

Optional

header

Payload

For SACK we need an optional header

24 bits

8

Block Length Left edge 1st block

Padding

Padding

Left edge 2nd block

Left edge 3rd block

Length 1st block

Length 2nd block

Length 3rd block

Optional

header

8 8

Number of SACK blocks in the optional header  
Between 1 and 3

For SACK we need an optional header

24 bits

8

Block Length Left edge 1st block

Padding

Padding

Left edge 2nd block

Left edge 3rd block

Length 1st block

Length 2nd block

Length 3rd block

Optional

header

8 8

Start of the first block

For SACK we need an optional header

24 bits

8

Block Length Left edge 1st block

Padding

Padding

Left edge 2nd block

Left edge 3rd block

Length 1st block

Length 2nd block

Length 3rd block

Optional

header

8 8

Length of the first block. In number of segments 
A block with one segment has size 1

For SACK we need an optional header

24 bits

8

Block Length Left edge 1st block

Padding

Left edge 2nd block

Left edge 3rd block

Length 1st block

Length 2nd block

Length 3rd block

Optional

header

8 8

Padding for better alignment

Padding

For SACK we need an optional header

4, 5, 8, 10, 11, 12, 13, 15, 16, 17

0, 1, 2Correctly received segments:

Buffered out-of-order segments:

Mandatory header:

SACK header:

SACK example - Receiver

4, 5, 8, 10, 11, 12, 13, 15, 16, 17

0, 1, 2Correctly received segments:

Buffered out-of-order segments:

Mandatory header: ACK number: 3

SACK header:

SACK example - Receiver

start b1#blocks

Padding

Padding

start b2

start b3

size b1

size b2

size b3

4, 5, 8, 10, 11, 12, 13, 15, 16, 17

0, 1, 2Correctly received segments:

Buffered out-of-order segments:

Mandatory header: ACK number: 3

SACK header:

SACK example - Receiver

4#blocks

Padding

Padding

start b2

start b3

2

size b2

size b3

4, 5, 8, 10, 11, 12, 13, 15, 16, 17

0, 1, 2Correctly received segments:

Buffered out-of-order segments:

Mandatory header: ACK number: 3

SACK header:

SACK example - Receiver

4#blocks

Padding

Padding

8

start b3

2

1

size b3

4, 5, 8, 10, 11, 12, 13, 15, 16, 17

0, 1, 2Correctly received segments:

Buffered out-of-order segments:

Mandatory header: ACK number: 3

SACK header:

SACK example - Receiver

4#blocks

Padding

Padding

8

10

2

1

4

4, 5, 8, 10, 11, 12, 13, 15, 16, 17

0, 1, 2Correctly received segments:

Buffered out-of-order segments:

Mandatory header: ACK number: 3

SACK header:

SACK example - Receiver

4#blocks

Padding

Padding

8

10

2

1

4

4, 5, 8, 10, 11, 12, 13, 15, 16, 17

0, 1, 2Correctly received segments:

Buffered out-of-order segments:

Mandatory header: ACK number: 3

SACK header:

no space

SACK example - Receiver

43

Padding

Padding

8

10

2

1

4

4, 5, 8, 10, 11, 12, 13, 15, 16, 17

0, 1, 2Correctly received segments:

Buffered out-of-order segments:

Mandatory header: ACK number: 3

SACK header:

SACK example - Receiver

43

Padding

Padding

8

10

2

1

4

Receiver SACK header:

ACK number: 3

ACK - block 1:

block 1 - block 2:

block 2 - block 3:

after block 3:

SACK example - Sender

43

Padding

Padding

8

10

2

1

4

Receiver SACK header:

ACK number: 3

ACK - block 1: 3

block 1 - block 2:

block 2 - block 3:

after block 3:

SACK example - Sender

43

Padding

Padding

8

10

2

1

4

Receiver SACK header:

ACK number: 3

ACK - block 1: 3

block 1 - block 2: 6, 7

block 2 - block 3:

after block 3:

SACK example - Sender

43

Padding

Padding

8

10

2

1

4

Receiver SACK header:

ACK number: 3

ACK - block 1: 3

block 1 - block 2: 6, 7

block 2 - block 3: 9

after block 3:

SACK example - Sender

43

Padding

Padding

8

10

2

1

4

Receiver SACK header:

ACK number: 3

ACK - block 1: 3

block 1 - block 2: 6, 7

block 2 - block 3: 9

after block 3: no retransmission

SACK example - Sender

43

Padding

Padding

8

10

2

1

4

Receiver SACK header:

ACK number: 3

ACK - block 1: 3

block 1 - block 2: 6, 7

block 2 - block 3: 9

after block 3: no retransmission

important: sender window is not moved

SACK example - Sender

To test your implementation…

… test with the implementation of another group

… optionally, use our test framework

… run your sender against your receiver

Ask your questions on Slack (#transport_project)  
or visit an exercise session

Maximilian Schütte (@Maximilian (TA))

Alexander Dietmüller (@Alexander (TA))

Tobias Bühler (@buehlert)

Rüdiger Birkner (@rbirkner)

Roland Meier (@roland)

Thomas Holterbach (@thomas_holterbach)

Next week on

Communication Networks

This Thursday: Ascension Day

Monday: Applications: DNS and HTTP

Python and Git 
tutorial

Reliable Transport ProjectRouting Project

Recap, demo  
and final results

Introduction 
and demo

The Hitchhiker‘s Guide
to Efficient Python

Development
Communication Networks
Spring 2018
ETH Zürich

Contents

#Why we use Python

#Stop wasting time: Editors, Linters, File Sync

#Get to know the framework

#Avoiding Catastrophe: Version Control

#Git made easy: GitLab and SourceTree

Python
Slither along with your friendly neighbourhood snake!

Reasons to choose Python

#Interpreted Language

#Many packages available

#Simple yet powerful Syntax / Beginner Friendly

#Often used in academia and science

Learn the Basics BEFORE You Start!
We promise the basics will pay off…

Learn the Basics BEFORE You Start!

#One afternoon on learnpython.org should suffice

#If you skip the preparation, bugs may go unnoticed and cost
you points

#Also you will spend much more time on debugging than you
would have to learn the python basics

Learning Python for Pros

https://learnxinyminutes.com/docs/python3/

https://learnxinyminutes.com/docs/python3/

Learning Python for Everyone

Interactive Getting Started Guide
http://www.learnpython.org/

Short Intro
https://developers.google.com/edu/python/

Not So Short Intro
http://thepythonguru.com/
https://docs.python.org/3/tutorial/index.html

Detailed Intro
https://learnpythonthehardway.org/python3/

Free Video Series for Beginners
https://mva.microsoft.com/en-US/training-courses/introduction-to-programming-with-

python-8360

Udemy Lecture for Beginners
https://www.udemy.com/complete-python-bootcamp/

http://www.learnpython.org/
https://developers.google.com/edu/python/
http://thepythonguru.com/
https://docs.python.org/3/tutorial/index.html
https://learnpythonthehardway.org/python3/
https://mva.microsoft.com/en-US/training-courses/introduction-to-programming-with-python-8360
https://www.udemy.com/complete-python-bootcamp/

Learning Python for Beginners

http://www.learnpython.org/

http://www.learnpython.org/

Python 2.7 or 3.x?

#Python 2.7 is slowly dying

#Python 3.x is cleaner, better, faster, stronger…

#Details
https://wiki.python.org/moin/Python2orPython3
https://www.dataquest.io/blog/python-2-or-3/
https://www.digitalocean.com/community/tutorials/python-2-vs-python-3-practical-

considerations-2
http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

https://wiki.python.org/moin/Python2orPython3
https://www.dataquest.io/blog/python-2-or-3/
https://www.digitalocean.com/community/tutorials/python-2-vs-python-3-practical-considerations-2
http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

Which Python Shall It Be?

Two major distributions to consider…

Which Python Shall It Be?

CPython from python.org

• The „default“ distribution
• Is installed on the VMs
• Comes only with standard

library
• Pip packet manager

Anaconda by Continuum Analytics

• Optimized for data science and
large scale science apps
• Derived from CPython
• Ships with a big library of

science related packages
• Uses Conda packet manager
• But also supports pip

VSCode & PyLint
It’s 2018, get your development workflow together!

Editing on the console is cumbersome…

… but sometimes useful for quick fixes!

#feelsawfulman

Many good Python IDEs available!

Sublime Text Visual Studio Code Atom.io

JetBrains PyCharm Eclipse PyDev

Many good Python IDEs available!

#Any of the above will do, you the one you know and adapt it
to the project!

#Top three are basic and can be used for many programming
languages

#PyCharm is the most powerful Python IDE and even free for
ETH students (professional edition)

Integrated Development Environment Benefits

#Easy to set up and getting started

#Come with many supporting tools out of the box
IntelliSense, Syntax Checker / Linter, Auto completion…

#GUI based debugging is much faster and easier

Linter

#A Linter performs static code analysis

#It points out…
#… errors in your code
#… redundant code
#… code that can be optimized
#… changes that improve the readability of your code

#Use it so you don’t have to spend hours chasing typos!

Secure File Transfer Protocol (SFTP)

#Available via extension for Visual Studio Code

#Makes transfering files from / to the VM super easy

#Extension shows you differences between local and vm code

Demo Time!

#Install Python

#Install Visual Studio Code & Python / PyLint + sftp extension

#Configure sftp & Download Project Files

#IntelliSense Demo

#CHECK SLACK FOR VIDEO DEMO! (to be released…)

Step-by-Step Installation Reference

Install CPython 3.x or Anaconda / Miniconda 3.x
https://www.python.org/downloads/
https://www.anaconda.com/download/

Install Visual Studio Code
https://code.visualstudio.com/

Start Visual Studio Code and click on the
extensions icon on the left

Search for and install Python (ms-
python.python) and sftp (liximomo.sftp)

Reload after BOTH installations have finished

https://www.python.org/downloads/
https://www.anaconda.com/download/
https://code.visualstudio.com/

Configure Python and PyLint in VSCode

Press F1 and enter “Python: Select Interpreter”

Choose the python version that you just installed
On Mac use the one in /usr/local, NOT the system installation!

Press F1 again and enter “Python: Selecte Linter” and choose “PyLint”

The first time you open a python file, you will receive a message box
in the bottom right corner saying that PyLint is not installed. Press
“install” to do so.
On Mac, gcc will be installed if not installed already

Configure sftp and Download Code Reference

In VSCode, open a folder where you want your project files to be
located.

Press F1 and enter “SFTP: Config”

A config file will pop up. Enter the details to your VM, as shown on
the next slide. Providing a password is optional.

The config will be stored a subfolder .vscode and can be edited
anytime.

Right click in the VSCode file browser and use the SFTP features like
“download”, “upload”, or “sync”.

In general, the plugin is conservative when it comes to
«destructive» operations. See Extension Info page for more details.

SFTP Example Config

{
"protocol": "sftp",
"host": "samichlaus.ethz.ch",
"username": "root",
"port": 3000+YOUR-GROUP-NUMBER,
"remotePath": "./",
"ignore": ["/.*"]

}

Don‘t forget this! It makes sure that you
just copy the project related files!

The Project Skeleton
You don‘t need to start from scratch...

Sending and Receiving Packets in Python

from scapy.all import send, IP, TCP

Payload = b"This is some binary test data."

packet = IP(src="192.168.0.1", dst="8.8.8.8") / TCP() / payload

send(packet)

Combine headers with the divison operator

Sending and Receiving Packets in Python

print(packet.summary())

print(packet.show())

from scapy.all import IP

ip_header = packet.getlayer(IP)

source_address = ip_header.src

payload = ip_header.payload

Show summary and details Access headers and data

Sending and Receiving Packets in Python

from scapy.all import Packet, bind_layers, BitEnumField, BitField

class GBN(Packet):
name = 'GBN'
fields_desc = [

BitEnumField("type", 0, 1, {0: "data", 1: "ack"}),
BitField("options", 0, 7),
other fields ...

]

Tell Scapy where to look for the header when receiving a packet
bind_layers(IP, GBN, frag=0, proto=222)

Define Your Own Header

Our GBN Automaton is powered by Scapy

from scapy.all import Automaton, ATMT

class GBNSender(Automaton):

@ATMT.state(initial=1)

def BEGIN(self):

raise self.SEND()

@ATMT.state()

def SEND(self):

Your code!

Transitions are triggered

by exceptions

Our GBN Automaton is powered by Scapy

The automaton skeleton is fully implemented...

...no new states or transitions needed

The receiver already works for the first question...

...complete the sender, check receiver for inspiration

The GBN header is already defined...

...you'll need to extend it in later questions

Where to start?

Version Control
If two people are working on one problem, you get two problems...

git Tracks Changes in Source Code

Without git

Everyone works on the same file and uploads it

to the server.

The version uploaded last overwrites all other

changes.

With git

Everyone works on the same file and pushes

the changes to the git repository.

All changes are combined, nothing is lost.

gitWorkflow

gitlab.ethz.ch
1. Create Repository

2. Invite Group Members

gitWorkflow

gitlab.ethz.ch

git clone <repository>

gitWorkflow

gitlab.ethz.ch

codecodecodecode...

git commit

gitWorkflow

gitlab.ethz.ch

1. git pull 2. git push

gitWorkflow

commit pull push

Try it yourself and learn more:

http://try.github.io/
https://backlog.com/git-tutorial/

http://try.github.io/
https://backlog.com/git-tutorial/

SourceTree & Gitlab
… because no matter what they say, GUI matters.

SourceTree

See Slack for Video Demo! (To be released)

