
Communication Networks

Spring 2017

ETH Zürich (D-ITET)

Laurent Vanbever

June 1 2017

www.vanbever.eu

Material inspired from Scott Shenker & Jennifer Rexford

Last Monday on

Communication Networks

WebDNS

google.ch 172.217.16.131 http://www.google.ch

WebDNS

google.ch 172.217.16.131

129.132.19.216

IP addressname

www.ethz.ch

DNS

The DNS system is a distributed database

which enables to resolve a name into an IP address

To scale,

DNS adopt three intertwined hierarchies

naming structure

management

infrastructure

addresses are hierarchical

www.ee.ethz.ch

hierarchy of authority

over names

hierarchy of DNS servers

naming structure addresses are hierarchical

www.ee.ethz.ch

root

com org net edu gov mil chbe de fr + many more

“.”

Top Level Domain (TLDs) sit at the top

root

com org net edu gov mil chbe de fr

“.”

ethz + many moreepfl nzz

Domains are subtrees

root

com org net edu gov mil chbe de fr

“.”

ethz

www ee infk + many more

epfl nzz

A name, e.g. ee.ethz.ch, represents

a leaf-to-root path in the hierarchy

management hierarchy of authority

over names

root

com org net edu gov mil chbe de fr

ethz

www ee infk

epfl nzz

The DNS system is

hierarchically administered

infrastructure hierarchy of DNS servers

com org net edu gov mil be de fr

(*) see http://www.root-servers.org/

ch

ethz

www ee infk

epfl nzz

root

13 root servers (managed professionally)

serve as root (*)

The bottom (and bulk) of the hierarchy is

managed by Internet Service Provider or locally

root

com org net edu gov mil be de frch

ethz

www ee infk

epfl nzz

Every server knows the address of the root servers (*)

required for bootstrapping the systems

(*) see https://www.internic.net/domain/named.root

From there on,

each server knows the address of all children

Using DNS relies on two components

resolver software local DNS server

usually, near the endhoststrigger resolution process

configured statically (resolv.conf)

dynamically (DHCP)or

send request to local DNS server

get_host_by_name()

MX domain

CNAME alias

NS domain

A hostname

Records Name Value

IP address

DNS server name

Mail server name

canonical name

PTR IP address corresponding hostname

DNS resolution can either be

recursive or iterative

root	
DNS	server

.edu	servers

nyu.edu		servers

www.nyu.edu?

DNS	client  
(me.ee.ethz.ch)

DNS	server
local

(dns1.ethz.ch)

root	
DNS	server

.edu	servers

nyu.edu		servers

Where is .edu?

Where is www.nyu.edu?

Where is nyu.edu?
DNS	server
local

DNS	client  
(me.ee.ethz.ch)

WebDNS

http://www.google.ch

The WWW is made of

three key components

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

We focused on

its implementation

ContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

Implementation

URL: name content

HTTP: transport content

ImplementationContentInfrastructure

Clients/Browser

Servers

Proxies

Objects
files, pictures, videos, …

Web sites
a collection of objects

organized in

URL: name content

HTTP: transport content

HTTP is a rather simple

synchronous request/reply protocol

HTTP is text-based (ASCII)

human readable, easy to reason about

HTTP is layered over a bidirectional byte stream

almost always TCP

HTTP is stateless

it maintains no info about past client requests

PerformanceProtocol

Today on

Communication Networks

NATICMP

Network Control Messages Network Address Translation

its use for discovery its use for sharing IPs

+ a little bit of SDN and course recap.

NATICMP

Network Control Messages

its use for discovery

What Errors Might A Router See?
● Dead-end: No route to destination

● Sign of a loop: TTL expires

● Can’t physically forward: packet too big
● And has DF flag set

● Can’t keep up with traffic: buffer overflowing

● Header corruption or ill-formed packets

● ….

What should network tell host about?
● No route to destination?
● Host can’t detect or fix routing failure.

● TTL expires?
● Host can’t detect or fix routing loop.

● Packet too big (with DF set)?
● Host can adjust packet size, but can’t tell difference

between congestion drops and MTU drops
● Buffer overflowing?
● Transport congestion control can detect/deal with this

● Header corruption or ill-formed packets?
● Host can’t fix corruption, but can fix formatting errors

Router Response to Problems?
● Router doesn’t really need to respond
● Best effort means never having to say you’re sorry
● So, IP could conceivably just silently drop packets

● Network is already trying its best
● Routing is already trying to avoid loops/dead-ends
● Network can’t reduce packet size (in DF packets)
● Network can’t reduce load, nor fix format problems

● What more can/should it do?

Error Reporting Helps Diagnosis
● Silent failures are really hard to diagnose

● IP includes feedback mechanism for network
problems, so they don’t go undetected

● Internet Control Message Protocol (ICMP)

● The Internet “print” statement

● Runs on IP, but viewed as integral part of IP

Internet Control Message Protocol
● Triggered when IP packet encounters a problem
● E.g., Time Exceeded or Destination Unreachable

● ICMP packet sent back to the source IP address
● Includes the error information (e.g., type and code)
● IP header plus 8+ byte excerpt from original packet

● Source host receives the ICMP packet
● Inspects excerpt (e.g., protocol/ports) to identify socket

● Exception: not sent if problem packet is ICMP
● And just for fragment 0 of a group of fragments

Types of Control Messages
● Need Fragmentation
● IP packet too large for link layer, DF set

● TTL Expired
● Decremented at each hop; generated if ⇒ 0

● Unreachable
● Subtypes: network / host / port
● (who generates Port Unreachable?)

● Source Quench
● Old-style signal asking sender to slow down

● Redirect
● Tells source to use a different local router

Using ICMP
● ICMP intended to tell host about network problems
● Diagnosis
● Won’t say more about this….

● Can exploit ICMP to elicit network information
● Discovery
● Will focus on this….

Discovering Network Path Properties
● PMTU Discovery: Largest packet that can go

through the network w/o needing fragmentation
● Most efficient size to use
● (Plus fragmentation can amplify loss)

● Traceroute:
● What is the series of routers that a packet traverses

as it travels through the network?

● Ping:
● Simple RTT measurements

Ping: Echo and Reply
● ICMP includes simple “echo” functionality
● Sending node sends an ICMP Echo Request message
● Receiving node sends an ICMP Echo Reply

● Ping tool
● Tests connectivity with a remote host
● … by sending regularly spaced Echo Request
● … and measuring delay until receiving replies

Path MTU Discovery
● MTU = Maximum Transmission Unit
● Largest IP packet that a link supports

● Path MTU (PMTU) = minimum end-to-end MTU
● Must keep datagrams no larger to avoid fragmentation

● How does the sender know the PMTU is?
● Strategy (RFC 1191):
● Try a desired value
● Set DF to prevent fragmentation
● Upon receiving Need Fragmentation ICMP …
● … oops, that didn’t work, try a smaller value

Issues with Path MTU Discovery
● What set of values should the sender try?
● Usual strategy: work through “likely suspects”
● E.g., 4352 (FDDI), 1500 (Ethernet),  

 1480 (IP-in-IP over Ethernet), 296 (some modems)
● What if the PMTU changes? (how could it?)
● Sender will immediately see reductions in PMTU (how?)
● Sender can periodically try larger values

● What if Needs Fragmentation ICMP is lost?
● Retransmission will elicit another one

● How can The Whole Thing Fail?
● “PMTU Black Holes”: routers that don’t send the ICMP

Discovering Routing via Time Exceeded

● Host sends an IP packet
● Each router decrements the time-to-live field

● If TTL reaches 0
● Router sends Time Exceeded ICMP back to the source
● Message identifies router sending it
● Since ICMP is sent using IP, it’s just the IP source address
● And can use PTR record to find name of router

host DNS... host host DNS...

router routerrouter

host

1.2.3.7

8.9.10.11

5.6.7.156

Time exceeded

Traceroute: Exploiting Time Exceeded

● Time-To-Live field in IP packet header
● Source sends a packet with TTL ranging from 1 to n
● Each router along the path decrements the TTL
● “TTL exceeded” sent when TTL reaches 0

● Traceroute tool exploits this TTL behavior

source destination

TTL=1
Time

 exceeded

TTL=2

Send packets with TTL=1, 2, …
 and record source of Time Exceeded message

NATICMP

Network Address Translation

its use for sharing IPs

Sharing Single Address Across Hosts
● Network Address Translation (NAT) enables many

hosts to share a single address
● Uses port numbers (fields in transport layer)

● Was thought to be an architectural abomination when
first proposed, but it:
● Probably saved us from address exhaustion
● And reflects a modern design paradigm (indirection)

Special-Purpose Address Blocks
● Limited broadcast
● Sent to every host attached to the local network
● Block: 255.255.255.255/32

● Loopback
● Address blocks that refer to the local machine
● Block: 127.0.0.0/8
● Usually only 127.0.0.1/32 is used

● Link-local
● By agreement, not forwarded by any router
● Used for single-link communication only
● Intent: autoconfiguration (especially when DHCP fails)
● Block: 169.254.0.0/16

● Private addresses
● By agreement, not routed in the public Internet
● For networks not meant for general Internet connectivity
● Blocks: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16

Network Address Translation (NAT)

Before NAT…every machine connected to Internet had
unique IP address

1.2.3.4

1.2.3.5

5.6.7.8

LAN

Clients

Server

Internet1.2.3.45.6.7.880 1001

dest addr src addr
dst port

src port

5.6.7.8 1.2.3.4 80 1001

NAT (cont’d)

● Assign addresses to machines behind same NAT
● Can be any private address range
● e.g. 192.168.0.0/16

● Use port numbers to multiplex single address

192.2.3.4

192.2.3.5

5.6.7.8

Clients

Server

Internet
NAT

1.2.3.4

5.6.7.8 192.2.3.4 80 1001

192.2.3.4:1001 1.2.3.4:2000

5.6.7.8 1.2.3.4 80 2000

1.2.3.45.6.7.880 2000

5.6.7.8 192.2.3.480 1001

NAT (cont’d)

● Assign addresses to machines behind same NAT
● Usually in address block 192.168.0.0/16

● Use port numbers to multiplex single address

192.2.3.4

192.2.3.5

5.6.7.8

Clients

Server

Internet
NAT

1.2.3.4

192.2.3.4:1001 1.2.3.4:2000

5.6.7.8 1.2.3.4 80 2001

1.2.3.45.6.7.880 2001

5.6.7.8 192.2.3.580 1001

192.2.3.5:1001 1.2.3.4:2001

5.6.7.8 192.2.3.5 80 1001

NAT: Early Example of “Middlebox”
● Boxes stuck into network to delivery functionality
● NATs, Firewalls,….

● Don’t fit into architecture, violate E2E principle

● But a very handy way to inject functionality that:
● Does not require end host changes or cooperation
● Is under operator control (e.g., security)

● An interesting architectural challenge:
● How to incorporate middleboxes into architecture

Software-Defined Networking &
Research outlook
Laurent Vanbever

based on original slides by Prof. Jennifer Rexford & Prof. Scott Shenker

Networks	are	Hard	to	Manage	

•  Opera2ng	a	network	is	expensive	
– More	than	half	the	cost	of	a	network	

– Yet,	operator	error	causes	most	outages	

•  Buggy	so@ware	in	the	equipment	

– Routers	with	20+	million	lines	of	code	

– Cascading	failures,	vulnerabili2es,	etc.	
•  The	network	is	�in	the	way�	

– Especially	a	problem	in	data	centers	

– …	and	home	networks	

What	is	SDN	and	how	does	it	help?	

•  SDN	is	a	new	approach	to	networking	
– Not	about	“architecture”:	IP,	TCP,	etc.	
– But	about	design	of	network	control	(rou2ng,	TE,…)	
	

•  SDN	is	predicated	around	two	simple	concepts	

– Separates	the	control-plane	from	the	data-plane	

– Provides	open	API	to	directly	access	the	data-plane	
	

•  While	SDN	doesn’t	do	much,	it	enables	a	lot	

Rethinking	the	�Division	of	Labor�	

Tradi2onal	Computer	Networks	

Data plane:
Packet

processing &
delivery

Forward, filter, buffer, mark,
rate-limit, and measure packets

Tradi2onal	Computer	Networks	

Track topology changes, compute
routes, install forwarding rules

Control plane:
Distributed algorithms,

establish state in devices

So@ware	Defined	Networking	(SDN)	

API to the data plane
(e.g., OpenFlow)

Logically-centralized control

Switches

Smart,
slow

Dumb,
fast

SDN	advantages	

•  Simpler	management	

– No	need	to	�invert�	control-plane	opera2ons	
•  Faster	pace	of	innova2on	

– Less	dependence	on	vendors	and	standards	
•  Easier	interoperability	

– Compa2bility	only	in	�wire�	protocols 	
•  Simpler,	cheaper	equipment	

– Minimal	so@ware	

OpenFlow	Networks	

OpenFlow	is	an	API		

to	a	switch	flow	table	

•  Simple	packet-handling	rules	

– Pa^ern:	match	packet	header	bits,	i.e.	flowspace	

– Ac2ons:	drop,	forward,	modify,	send	to	controller		

– Priority:	disambiguate	overlapping	pa^erns	

– Counters:	#bytes	and	#packets	

10.	src=1.2.*.*,	dest=3.4.5.*	à	drop																									
05.	src	=	*.*.*.*,	dest=3.4.*.*	à	forward(2)	
01.	src=10.1.2.3,	dest=*.*.*.*	à	send	to	controller	

OpenFlow	is	an	API		

to	a	switch	flow	table	

•  Simple	packet-handling	rules	

– Pa^ern:	match	packet	header	bits,	i.e.	flowspace	

– Ac2ons:	drop,	forward,	modify,	send	to	controller		

– Priority:	disambiguate	overlapping	pa^erns	

– Counters:	#bytes	and	#packets	

10.	src=1.2.*.*,	dest=3.4.5.*	à	drop																									
05.	src	=	*.*.*.*,	dest=3.4.*.*	à	forward(2)	
01.	src=10.1.2.3,	dest=*.*.*.*	à	send	to	controller	

src:1.2.1.1,	dst:3.4.5.6
pkt

OpenFlow	is	an	API		

to	a	switch	flow	table	

•  Simple	packet-handling	rules	

– Pa^ern:	match	packet	header	bits,	i.e.	flowspace	

– Ac2ons:	drop,	forward,	modify,	send	to	controller		

– Priority:	disambiguate	overlapping	pa^erns	

– Counters:	#bytes	and	#packets	

10.	src=1.2.*.*,	dest=3.4.5.*	à	drop																									
05.	src	=	*.*.*.*,	dest=3.4.*.*	à	forward(2)	
01.	src=10.1.2.3,	dest=*.*.*.*	à	send	to	controller	

src:1.2.1.1,	dst:3.4.5.6
pkt

OpenFlow	is	an	API		

to	a	switch	flow	table	

•  Simple	packet-handling	rules	

– Pa^ern:	match	packet	header	bits,	i.e.	flowspace	

– Ac2ons:	drop,	forward,	modify,	send	to	controller		

– Priority:	disambiguate	overlapping	pa^erns	

– Counters:	#bytes	and	#packets	

10.	src=1.2.*.*,	dest=3.4.5.*	à	drop																									
05.	src	=	*.*.*.*,	dest=3.4.*.*	à	forward(2)	
01.	src=10.1.2.3,	dest=*.*.*.*	à	send	to	controller	

src:1.2.1.1,	dst:3.4.5.6
pkt

OpenFlow	is	an	API		

to	a	switch	flow	table	

•  Simple	packet-handling	rules	

– Pa^ern:	match	packet	header	bits,	i.e.	flowspace	

– Ac2ons:	drop,	forward,	modify,	send	to	controller		

– Priority:	disambiguate	overlapping	pa^erns	

– Counters:	#bytes	and	#packets	

10.	src=1.2.*.*,	dest=3.4.5.*	à	drop																									
05.	src	=	*.*.*.*,	dest=3.4.*.*	à	forward(2)	
01.	src=10.1.2.3,	dest=*.*.*.*	à	send	to	controller	

src:1.2.1.1,	dst:3.4.5.6
pkt

OpenFlow	is	an	API		

to	a	switch	flow	table	

•  Simple	packet-handling	rules	

– Pa^ern:	match	packet	header	bits,	i.e.	flowspace	

– Ac2ons:	drop,	forward,	modify,	send	to	controller		

– Priority:	disambiguate	overlapping	pa^erns	

– Counters:	#bytes	and	#packets	

10.	src=1.2.*.*,	dest=3.4.5.*	à	drop																									
05.	src	=	*.*.*.*,	dest=3.4.*.*	à	forward(2)	
01.	src=10.1.2.3,	dest=*.*.*.*	à	send	to	controller	

src:1.2.1.1,	dst:3.4.5.6
pkt

OpenFlow	is	an	API		

to	a	switch	flow	table	

•  Simple	packet-handling	rules	

– Pa^ern:	match	packet	header	bits,	i.e.	flowspace	

– Ac2ons:	drop,	forward,	modify,	send	to	controller		

– Priority:	disambiguate	overlapping	pa^erns	

– Counters:	#bytes	and	#packets	

10.	src=1.2.*.*,	dest=3.4.5.*	à	drop																									
05.	src	=	*.*.*.*,	dest=3.4.*.*	à	forward(2)	
01.	src=10.1.2.3,	dest=*.*.*.*	à	send	to	controller	

src:1.2.1.1,	dst:3.4.5.6
pkt

OpenFlow	switches	can	emulate	

different	kinds	of	boxes	

•  Router	
– Match:	longest	

des2na2on	IP	prefix	

– Ac2on:	forward	out	a	
link	

•  Switch	
– Match:	des2na2on	MAC	

address	

– Ac2on:	forward	or	flood	

•  Firewall	
– Match:	IP	addresses	and	

TCP/UDP	port	numbers	

– Ac2on:	permit	or	deny		

•  NAT	
– Match:	IP	address	and	

port	

– Ac2on:	rewrite	address	
and	port	

Controller:	Programmability	

SDN/OpenFlow
controller

Receives events from switches
Topology changes,

Traffic statistics,
Arriving packets

Send commands to switches
(Un)install rules,
Query statistics,

Send packets

while (true):
 read event e:
 if e == switch up:
 - update topology
 - populates switch table
 …

Receives events from switches
Topology changes,

Traffic statistics,
Arriving packets

Send commands to switches
(Un)install rules,
Query statistics,

Send packets

Controller:	Programmability	

Example	OpenFlow	Applica2ons	

•  Dynamic	access	control	
•  Seamless	mobility/migraFon	
•  Server	load	balancing	
•  Network	virtualiza2on	
•  Using	mul2ple	wireless	access	points	

•  Energy-efficient	networking	

•  Adap2ve	traffic	monitoring	

•  Denial-of-Service	a^ack	detec2on	

E.g.:	Dynamic	Access	Control	

•  Inspect	first	packet	of	a	connec2on	
•  Consult	the	access	control	policy	
•  Install	rules	to	block	or	route	traffic	

E.g.:	Seamless	Mobility/Migra2on	

•  See	host	send	traffic	at	new	loca2on	

•  Modify	rules	to	reroute	the	traffic	

E.g.:	Server	Load	Balancing	

•  Pre-install	load-balancing	policy	
•  Split	traffic	based	on	source	IP	

src=0*

src=1*

Challenges	

Heterogeneous	Switches	

•  Number	of	packet-handling	rules	

•  Range	of	matches	and	ac2ons	

•  Mul2-stage	pipeline	of	packet	processing	

•  Offload	some	control-plane	func2onality	(?)	

access
control

MAC
look-up

IP
look-up

Controller	Delay	and	Overhead	

•  Controller	is	much	slower	than	the	switch	

•  Processing	packets	leads	to	delay	and	overhead	
•  Need	to	keep	most	packets	in	the	�fast	path�	

packets

Distributed	Controller	

Network	OS	

Controller
Application

Network	OS	

Controller
Application

For scalability
and reliability

Partition and replicate state

Tes2ng	and	Debugging	

•  OpenFlow	makes	programming	possible	

– Network-wide	view	at	controller	
– Direct	control	over	data	plane	

•  Plenty	of	room	for	bugs	

– S2ll	a	complex,	distributed	system	

•  Need	for	tes2ng	techniques	
– Controller	applica2ons	
– Controller	and	switches	
– Rules	installed	in	the	switches	

Programming	Abstrac2ons	

•  OpenFlow	is	a	low-level	API	
– Thin	veneer	on	the	underlying	hardware	

•  Makes	network	programming	

possible,	not	easy!	

Controller

Switches

Example: Simple Repeater

def	switch_join(switch):	
		#	Repeat	Port	1	to	Port	2	
		p1	=	{in_port:1}	
		a1	=	[forward(2)]	
		install(switch,	p1,	DEFAULT,	a1)	
		
		#	Repeat	Port	2	to	Port	1	
		p2	=	{in_port:2}	
		a2	=	[forward(1)]	
		install(switch,	p2,	DEFAULT,	a2)	

Simple Repeater

1 2

Controller

When a switch joins the network, install two forwarding rules.

Example: Web Traffic Monitor

def	switch_join(switch):	
		#	Web	traffic	from	Internet	
		p	=	{inport:2,tp_src:80}	
		install(switch,	p,	DEFAULT,	[])	
		query_stats(switch,	p)	
		
def	stats_in(switch,	p,	bytes,	…)	
		print	bytes	
		sleep(30)	
		query_stats(switch,	p)	

Monitor �port 80� traffic

1 2

Web traffic

When a switch joins the network, install one monitoring rule.

Composition: Repeater + Monitor

def	switch_join(switch):	
		pat1	=	{inport:1}	
		pat2	=	{inport:2}	
		pat2web	=	{in_port:2,	tp_src:80}	
		install(switch,	pat1,	DEFAULT,	None,	[forward(2)])	
		install(switch,	pat2web,	HIGH,	None,	[forward(1)])	
		install(switch,	pat2,	DEFAULT,	None,	[forward(1)])	
		query_stats(switch,	pat2web)	
	
def	stats_in(switch,	xid,	pattern,	packets,	bytes):	
		print	bytes	
		sleep(30)	
		query_stats(switch,	pattern)	
	

Repeater + Monitor

Must think about both tasks at the same time.

Asynchrony: Switch-Controller Delays
• Common OpenFlow programming idiom

– First packet of a flow goes to the controller
– Controller installs rules to handle remaining packets

• What if more packets arrive before rules installed?
– Multiple packets of a flow reach the controller

• What if rules along a path installed out of order?
– Packets reach intermediate switch before rules do

Must think about all possible event orderings.

Controller

packets

Better: Increase the  
level of abstraction

• Separate reading from writing
– Reading: specify queries on network state
– Writing: specify forwarding policies

• Compose multiple tasks
– Write each task once, and combine with others

• Prevent race conditions
– Automatically apply forwarding policy to extra packets

• See http://frenetic-lang.org/

Current	research	direc2ons	

•  Bring	SDN	to	the	Internet	
•  Enable	SDN	in	exis2ng	networks	
•  Boost	the	performance	of	exis2ng	networks		

using	SDN	

•  Verify	controller	programs	and	interac2ons	

•  Improve	network	monitoring		

•  Improve	network	security	and	anonymity	

•  …	and	many	more!	

Conclusions	

•  SDN	is	exci2ng	
– Enables	innova2on	
– Simplifies	management	

– Rethinks	networking	from	the	ground-up	

•  Significant	momentum	

–  In	both	research	and	industry	
– Size	of	the	SDN	market	already	several	billion	$$	

•  Great	research	opportunity	
– Prac2cal	impact	on	future	networks	prac2ces	

– Placing	network	on	a	strong	founda2on	

Communication Networks

So what?!

Knowledge 
Understand how the Internet works and why

from your

network plug…

…to Google's data-center

> www.google.ch

and pressing enter in your browser

List any

technologies, principles, applications…

used after typing in:

Insight  
Key concepts and problems in Networking

Naming Layering Routing Sharing Reliability

Trinity using a port scanner (nmap) in Matrix Reloaded™

Skill 
Build, operate and configure networks

Application

Transport

Network

Link

Physical

L4

L3

layer

The Internet is organized as layers,

providing a set of services

L5

L2

L1

network access

end-to-end delivery (reliable or not)

global best-effort delivery

local best-effort delivery

physical transfer of bits

service provided

HTTP(S)

TCP/UDP

IP

Ethernet

IP

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link et
h0

et
h1

et
h2

et
h0

et
h1

et
h2

host host

router

switch

Application

Transport

Network

Link

Physical

L4

L3

network access

end-to-end delivery (reliable or not)

global best-effort delivery

local best-effort delivery

physical transfer of bits

We started with the fundamentals of

routing and reliable transport

We saw three ways to compute valid routing state

Use tree-like topologies

Rely on a global network view

Rely on distributed computation

Spanning-tree

Link-State

Distance-Vector

#1

#2

#3

BGP

SDN

Intuition Example

minimize time until data is transferred

ensure data is delivered, in order, and untouched

optimal use of bandwidth

correctness

timeliness

efficiency

goals

fairness play well with other concurrent communications

We saw how to design a reliable transport protocol

In each case, we explored the rationale behind

each protocol and why they came to be

What tradeoffs do they achieve?

efficiency, cost,…

Why did the protocols end up looking like this?

minimum set of features required

When is one design more adapted than another?

packet switching vs circuit switching, DV vs LS,…

We then climbed up the layers,

starting from layer 2

HTTP(S)

TCP/UDP

IP

Ethernet

IP

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link et
h0

et
h1

et
h2

et
h0

et
h1

et
h2

Communication Networks

Part 2: The Link Layer

What is a link?

How do we identify link adapters?

How do we share a network medium?

What is Ethernet?

How do we interconnect segments at the link layer?

#1

#2

#3

#4

#5

HTTP(S)

TCP/UDP

IP

Ethernet

IP

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link et
h0

et
h1

et
h2

et
h0

et
h1

et
h2

We then spent multiple weeks on layer 3

use, structure, allocation

IP addresses1

IP forwarding

longest prefix match rule

2

IP header

IPv4 and IPv6, wire format

3

Internet Protocol and Forwarding

source: Boardwatch Magazine

Link-state protocols

Intra-domain routing1

Distance-vector protocols

Inter-domain routing2

Internet routing

from here to there, and back

Path-vector protocols

Follow the Money

BGP Policies1

Protocol

How does it work?

2

Problems

security, performance, …

3

Border Gateway Protocol

policies and more

69

intra-domain

routing

inter-domain

routing

Routing security

insider in/outsider

attacks & mitigation

BGP does not validate the origin of advertisements

BGP does not validate the content of advertisements

Proposed Enhancements

What about the data plane?

What’s the Internet to do anyway?

#1

#2

#3

#4

#5

BGP (lack of) security:

problems & solutions

HTTP(S)

TCP/UDP

IP

Ethernet

IP

HTTP(S)

TCP/UDP

IP

Ethernet

Application

Transport

Network

Link et
h0

et
h1

et
h2

et
h0

et
h1

et
h2

4 = 3+1

● Data delivering, to the correct application
● IP just points towards next protocol
● Transport needs to demultiplex incoming data (ports)

● Files or bytestreams abstractions for the applications
● Network deals with packets
● Transport layer needs to translate between them

● Reliable transfer (if needed)
● Not overloading the receiver
● Not overloading the network

Transport Protocols: UDP & TCP
The requirements

● Demultiplexing: identifier for application process
● Going from host-to-host (IP) to process-to-process

● Translating between bytestreams and packets:
● Do segmentation and reassembly

● Reliability: ACKs and all that stuff
● Corruption: Checksum
● Not overloading receiver: “Flow Control”

● Limit data in receiver’s buffer
● Not overloading network: “Congestion Control”

Transport Protocols: UDP & TCP
The implementation

We then looked at Congestion Control

and how it solves three fundamental problems

bandwidth

estimation

How to adjust the bandwidth of a single flow

to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps…

bandwidth

adaptation

How to adjust the bandwidth of a single flow

to variation of the bottleneck bandwidth?

fairness How to share bandwidth “fairly" among flows,

without overloading the network

#1

#2

#3

detecting

congestion

reacting to

congestion

… by combining two key mechanisms

WebDNS

google.ch 172.217.16.131 http://www.google.ch

We finally looked at

what’s running on top of all this …

… and filled-up some holes

with 2 helpers protocols

NATICMP

Network Control Messages Network Address Translation

its use for discovery its use for sharing IPs

http://www.opte.org

Now you (better) understand this!

We’ve opportunities for both

Master and Semester theses

soon available on our

upcoming website:

for now, shoot us an email

nsg.ee.ethz.ch (coming soon)

Communication Networks

Spring 2017

ETH Zürich (D-ITET)

Laurent Vanbever

June 1 2017

www.vanbever.eu

