Communication Networks
Spring 2017

Laurent Vanbever

www.vanbever.eu

ETH Zirich (D-ITET)
May, 8 2017

Material inspired from Scott Shenker & Jennifer Rexford



http://www.vanbever.eu

Two weeks ago on

Communication Networks



Routing Security

not fOlg'u-
Not 1, o n,
; forge;, We d. ttorg,
Go'loc'o o ney forgiy oct
.ﬂ“’fm mdoﬂot'wyh’a. E*Nuus We ar, Anon
Wo o 0t foroge, We ¢ ﬂq’omko, Expact Us W, are An, Oy, |
drop, T YOt forgay, mnmﬁm %qm We mAnonyvl'n:uc. We arw |
- We g Not donqm,% Vs, Anm’n”u 8 1 vatom W
| Torget. wy, do no¢ forgive, &p‘:.u-.lb -.Anonmwc. Wo are (o;
ot Arodonot ive, us, m‘"hm,oua. We are tor,
ot fo ivg, E':':;qtn womanmnm... lvaml..gm_ ‘l;:g e
Ve, Ex ., owAnonM Wo arg Loglon Wegs . .
US. We rea, . g OM‘W Wodonol forg.. Pect g
A r.'w,,mﬁ.- ol Ro¢ 'OIM. WO O Ny ot & are Anony' :
¢ o Ve de not for e, Anc-nynlous Wa
ve Ey Ug. ) s, We 26 | ag.
Dect Us W, are e e Lami
arg Mo I'an
ngt r:‘xw'. & n'?y':::_nym
"give Pect us. s Vh&.lag
“XDoet We apg Ny L We - Gt Uy
0 arg 4, do"«fofu' 1 e “apa, "Care an,,
ous, w ' gey 0 no ;. Iivy, | ' L ONYmoys. Wo .,
' Wada Tt forgng - r.\...cw..w. are We o .
0L Hongive. £ B.We o 4’%% Wo arg | - We 4, no
Ve ¢ ol s oo 0 P % Expgcy us An--nymou& We ane Loglon We o, 9t forge
' dg e =4POct yg. 8ro Ang . We e | W.donoc 9oL W, do
! ““brﬂm Ug. Wy arn Wy"vou& We aro Logion. net 'orﬂot. ®dongy .
Qive, us Wom&m Weo ﬂn"n.lon. We g, Ctges. We g A forgy, e .
Xw“mm m%"ﬂﬂom “doﬂot !ur;.m ot fory 7.
EETY nymou.. Wowl’ﬂon_ Wo do fm We a4, ot for
VS, We are LOgloq Wo «, Not forges. We dg ot forgi,. Fxpecy | Ve ar.
re Leglon. We g, ot forg,., Ve do not ¢, - Expgos & "oy me ug
10 noy farges We . o Pect yg We 4. We ars Logiop
ot W, V0. Bxpans Ve are 4 ® Logio, e
ot us Wwe 40 nog for
8. We anAno. ¥ 1o not foragy
dre AnonyMo - We o
Mous, w, fre Log,,
u *Legion, Weo o z ug. W
N orgiv e q.
n “TeNw nrg fiony,,
Qe .. . “.rvm amAnOn
e, are us. w.
" Aol e Warme
N 7y N Uo N wo do
n 0t forgee. " Wive g
% £ We do AP ct
LF ' fo'_D_AVQ. C ar
VO, | Pece us s
W, A

[image source]


https://en.wikipedia.org/wiki/File:Libra-Skull.jpg

Routing security

attacks & mitigation

intra-domain inter-domain
routing routing

insider in/outsider



Routing security

attacks & mitigation

intra-domain inter-domain
routing routing

insider in/outsider



Most of the attacks on intra-domain routing aim at
performing Denial-of-Service (DoS) or intercept traffic

Interception

DoS

eavesdrop on/drop/modify/inject/delay traffic
steer traffic along paths controlled by the attacker

induce churn to overload the routers
announce/withdraw at fast pace

floods the routers link-state database
inject thousands of prefixes

induce congestion/higher delay
steer traffic along fewer/low-throughput paths

prevent reachability
steer traffic along blackholes or loops



The solution is quite simple:

Rely on cryptography!

Problem

Solution 1

(light)

Solution 2
(heavy)

Bogus advertisements can be injected

Legitimate advertisements can be tampered with

Use Cryptographic Authentication (header)

integrity and authentication

Encrypt the entire advertisement (header/payload)

integrity, authentication and confidentiality



Routing security

attacks & mitigation

intra-domain inter-domain
routing routing

insider in/outsider



BGP security:

BGP does not validate the origin of advertisements
BGP does not validate the content of advertisements
Proposed Enhancements

What about the data plane?

What’s the Internet to do anyway?



BGP (lack of) security:
problems & solutions

BGP does not validate the origin of advertisements

#2 BGP does not validate the content of advertisements
#3 Proposed Enhancements
#4 What about the data plane?

#5 What’s the Internet to do anyway?



Prefix Hijacking

SR ¢ 12.34.0.0/16
| 12.34.0.0/16

* Blackhole: data traffic is discarded
* Snooping: data traffic is inspected, then redirected

* |[mpersonation: traffic sent to bogus destinations



Sub-Prefix Hijacking

)/

y 2.34.0.0/16
112.34.158.0/24

* Originating a more-specific prefix
— Every AS picks the bogus route for that prefix
— Traffic follows the longest matching prefix



BGP (lack of) security:
problems & solutions

#1 BGP does not validate the origin of advertisements
BGP does not validate the content of advertisements

#3 Proposed Enhancements

#4 What about the data plane?

#5 What’s the Internet to do anyway?



Bogus AS Paths

* Remove ASes from the AS path
— E.g., turn “701 3715 88" into “701 88"

* Motivations

— Attract sources that normally try to avoid AS 3715
— Help AS 88 look like it is closer to the Internet’s core

* Who can tell that this AS path is a lie?
— Maybe AS 88 does connect to AS 701 directly




Bogus AS Paths

* Add ASes to the path
— E.g., turn “701 88" into “701 3715 88”

* Motivations

— Trigger loop detection in AS 3715
* Denial-of-service attack on AS 3715
* Or, blocking unwanted traffic coming from AS 3715!

— Make your AS look like is has richer connectivity

* Who can tell the AS path is a lie?
— AS 3715 could, if it could see the route
— AS 88 could, but would it really care?




Bogus AS Paths

* Adds AS hop(s) at the end of the path
— E.g., turns “701 88” into “701 88 3”

* Motivations
— Evade detection for a bogus route
— E.g., by adding the legitimate AS to the end

* Hard to tell that the AS path is bogus...
— Even if other ASes filter based on prefix ownership

18.0.0.0/8

L2y

18.0.0.0/8




BGP security:

BGP does not validate the origin of advertisements
BGP does not validate the content of advertisements
Proposed Enhancements

What about the data plane?

What’s the Internet to do anyway?



Secure BGP g
Origin Authentication + cryptographic signatures

a;: (v, Prefix)

—
q‘ v

L &
~
~
-
\ .
. -
‘\
/
F
§
| !
[

/] =5 TP Prefix
/|
/|
‘ L ‘
. / jl 5"02
| |
\

B =

a;: (v, Prefix)

) 2 who knows V's public key can |

o) sent by V.

m: (ay, v, Prefix)




S-BGP Secure Version of BGP

* Address attestations
— Claim the right to originate a prefix
— Signed and distributed out-of-band
— Checked through delegation chain from ICANN

* Route attestations
— Distributed as an attribute in BGP update message
— Signed by each AS as route traverses the network

* S-BGP can validate

— AS path indicates the order ASes were traversed
— No intermediate ASes were added or removed



This week on

Communication Networks



We’re continuing our journey up the layers,
now looking at the transport layer

Application HTTP(S)

I

Transport TCP/UDP

o
Network |P ;
e
R
Link Ethernet



What do we need in the Transport layer?

Functionality implemented in network

Keep minimal

Functionality implemented in the application
Keep minimal

» Restricted to application-specific functionality

Functionality implemented in the "network stack”
» The shared networking code on the host

» This relieves burden from both app and network



What do we need in the Transport layer?

Application layer
Communication for specific applications
e.g., HyperText Transfer Protocol (HTTP),
File Transfer Protocol (FTP)

Network layer
Global communication between hosts
Hides details of the link technology
e.g., Internet Protocol (IP)



What Problems Should Be Solved Here?

Data delivering, to the correct application

* |P just points towards next protocol
« Transport needs to demultiplex incoming data (ports)

Files or bytestreams abstractions for the applications
» Network deals with packets
» Transport layer needs to translate between them
Reliable transfer (if needed)
Not overloading the receiver

Not overloading the network



What Is Needed to Address These?

identifier for application process

Going from host-to-host (IP) to process-to-process

Do segmentation and reassembly
ACKs and all that stuff
Checksum
“Flow Control”
Limit data in receiver’s buffer

“Congestion Control”



UDP: Datagram messaging service

UDP provides a connectionless, unreliable transport service

e No-frills extension of “best-effort” IP

« UDP provides only two services to the App layer
 Multiplexing/Demultiplexing among processes

e Discarding corrupted packets



TCP: Reliable, in-order delivery

TCP provides a connection-oriented, reliable, bytestream
transport service

What UDP provides, plus:

 Retransmission of lost and corrupted packets
 Flow control

e (Congestion control

e “Connection” set-up & tear-down



Connections (or sessions)

Reliability requires keeping state
Sender: packets sent but not ACKed, and related timers
Recelver: noncontiguous packets

Each bytestream is called a connection or session
Each with their own connection state

State is in hosts, not network!



What transport protocols do not provide

Delay and/or bandwidth guarantees
This cannot be offered by transport
Requires support at IP level (and let’s not go there)

Sessions that survive change-of-IP-address
This is an artifact of current implementations
As we shall see....



Important Context: Sockets and Ports

Sockets: an operating system abstraction

Ports: a networking abstraction
This is not a port on a switch (which is an interface)
Think of it as a logical interface on a host



Sockets

A socket is a software abstraction by which an application process
exchanges network messages with the

operating system
socketlD = sockef(..., socket. TYPE)
socketlD.sendto(message, ...)

socketID.recvfrom(...)

Two important types of sockets
UDP socket: TYPE is SOCK_DGRAM
TCP socket: TYPE is SOCK_STREAM



Ports

Problem: which app (socket) gets which packets

Solution: port as transport layer identifier (16 bits)

Packet carries source/destination port numbers
In transport header

OS stores mapping between sockets and ports
Port: in packets
Socket: in OS



More on Ports

Separate 16-bit port address space for UDP, TCP

“Well known” ports (0-1023)
Agreement on which services run on these ports
e.g., ssh:22, http:80
Client (app) knows appropriate port on server
Services can listen on well-known port

Ephemeral ports (most 1024-65535):
Given to clients (at random)



Multiplexing and Demultiplexing

Host receives IP datagrams
» Each datagram has source and destination IP address,
 Each segment has source and destination port number

Host uses IP addresses and port numbers to direct the segment to
appropriate socket

32 bits >

source port # dest port #

other header fields

application
data
(message)




4-bit 4-bit 8-bit _
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
: e s 3-bit
16-bit Identification Flags | 13-bit Fragment Offset
8-bit Time t _
Li:,e (I-T:L)o 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)




8-bit
4 5 Type of Service
(TOS)

16-bit Total Length (Bytes)

16-bit Identification

3-bit
Flags

13-bit Fragment Offset

8-bit Time t
Li:,e (I-'m_)o 8-bit Protocol

16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address




8-bit
4 5 Type of Service
(TOS)

16-bit Total Length (Bytes)

16-bit Identification

3-bit
Flags

13-bit Fragment Offset

8-bit Time to 6=TCP
17 = UDP

16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address




8-bit
4 5 Type of Service
(TOS)

16-bit Total Length (Bytes)

16-bit Identification

3-bit
Flags

13-bit Fragment Offset

8-bit Time to 6=TCP
17 = UDP

16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address




Connection Mappings

For UDP ports (SOCK_DGRAM)
OS stores (local port, local IP address) € - socket

For TCP ports (SOCK_STREAM)
OS stores (local port, local IP, remote port, remote IP) <-> socket

Why the difference?
Implications for mobility

Why do you need to include local IP?



UDP



UDP: User Datagram Protocol

Lightweight communication between processes
Avoid overhead and delays of ordered, reliable delivery
Send messages to and receive them from a socket

UDP described in RFC 768 — (1980!)
IP plus port numbers to support (de)multiplexing
Optional error checking on the packet contents

(checksum field = 0 means “don't verify checksum”)

SRC port DST port

checksum length

DATA




Why Would Anyone Use UDP?

Finer control over what data is sent and when
As soon as an application process writes into the socket
... UDP will package the data and send the packet
No delay for connection establishment
UDP just blasts away without any formal preliminaries
... Which avoids introducing any unnecessary delays
No connection state
No allocation of buffers, sequence #s, timers ...
... making it easier to handle many active clients at once
Small packet header overhead
UDP header is only 8 bytes



Popular Applications That Use UDP

Some interactive streaming apps

» Retransmitting lost/corrupted packets often pointless:
by the time the packet is retransmitted, it's too late

» telephone calls, video conferencing, gaming...
Simple query protocols like Domain Name System (DNS)
» Connection establishment overhead would double cost
» Easier to have application retransmit if needed

S “Address for bbc.co.uk?”
¢
@ | a

/# S (212.58.224.131" |

e




TCP



Transmission Control Protocol (TCP)

Reliable, in-order delivery

Ensures byte stream (eventually) arrives intact
In the presence of corruption and loss

Connection oriented

Explicit set-up and tear-down of TCP session
Full duplex stream-of-bytes service

Sends and receives a stream of bytes, not messages
Flow control

Ensures that sender doesn’t overwhelm receiver
Congestion control

Dynamic adaptation to network path’s capacity



Basic Components of Reliability

ACKs
Can’t be reliable without knowing whether data has arrived

TCP uses byte sequence numbers to identify payloads

Checksums
Can’t be reliable without knowing whether data is corrupted

TCP does checksum over TCP and pseudoheader

Timeouts and retransmissions
Can’t be reliable without retransmitting lost/corrupted data
TCP retransmits based on timeouts and duplicate ACKs

Timeout based on estimate of RTT



Other TCP Design Decisions

Sliding window flow control
Allow W contiguous bytes to be in flight
Cumulative acknowledgements
Selective ACKs (full information) also supported (ignore)
Single timer set after each payload is ACKed
Timer is effectively for the “next expected payload”
When timer goes off, resend that payload and wait
And double timeout period
Various tricks related to “fast retransmit”
Using duplicate ACKs to trigger retransmission



TCP Header

Source port

Destination port

Sequence number

Acknowledgment

HdrLen| Flags

Advertised window

Checksum

Urgent pointer

Options (variable)




TCP Header

<

m——— L

—  Source port
>.A'<;

Destination port \>

/

These should —
be familiar

————

Sequence number

Acknowledgment

HdrLen

| 3¢

0

Flags | Advertised window

/

Checksum ) Urgent pointer

S~

—

7

e

o

Options (variable)




Segments and Sequence Numbers



TCP “Stream of Bytes” Service...

Application @ Host A

0 4g
[ 949
Z94g
¢ 9149

0% 149

0akg | ”
[ 9hg

7 Ag
¢ kg
g ALY

Application @ Host B



... Provided Using TCP “Segments”

Host A
N " < Segment Sent When:
TCP Data 1. Segment full (Max Segment Size),
2. Not full, but times out
TCP Data
HostB | ||| -




TCP Segment

IP Data

TCP Data (segment)

TCP Hdr

IP packet

IP Hdr

No bigger than Maximum Transmission Unit (MTU)
E.g., up to 1500 bytes with Ethernet

TCP packet

IP packet with a TCP header and data inside

TCP header = 20 bytes long

TCP segment

No more than Maximum Segment Size (MSS) bytes
E.g., up to 1460 consecutive bytes from the stream
MSS = MTU — (IP header) — (TCP header)



Sequence Numbers

ISN (initial sequence number)
k bytes

Sequence number
= 1st byte in segment =
ISN + k




Sequence Numbers

ISN (initial sequence number)

k
Host A
Sequence number TCP Data | TCP
= 1st byte in segment = HDR
ISN + k ACK sequence number
= next expected byte

= seqno + length(data)

TCP Data |/=°

Host B




ACKing and Sequence Numbers

Sender sends packet
Data starts with sequence number X

Packet contains B bytes
X, X+1, X+2, ... X+B-1

Upon receipt of packet, receiver sends an ACK
If all data prior to X already received:
ACK acknowledges X+B (because that is next expected byte)
If highest contiguous byte received is smaller value Y

ACK acknowledges Y+1
Even if this has been ACKed before



Normal Pattern

Sender: segno=X, length=B
Receiver: ACK=X+B

Sender: segno=X+B, length=B
Receiver: ACK=X+2B

Sender: segno=X+2B, length=B



TCP Header

Starting byte Source port Destination port

offset of data — ———
carried in this < Sequence number - D
segment Acknowledgment

HdrLen| 0 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)




TCP Header

Acknowledgment
gives seqgno just

beyond highest Sequence number
seqgno received — —

]
in order /<\ Acknowledgment -

——

“What Byte is Next” HdrLen| 0 | Flags | Advertised window

Source port Destination port

Checksum Urgent pointer

Options (variable)




TCP Header

Source port

Destination port

Sequence number

Acknowledgment

HdrLen| o

Flags

@ed window
/

Checksum

Urgent pointer

Options (variable)




Sliding Window Flow Control

Advertised Window: W
Can send W bytes beyond the next expected byte

Receiver uses W to prevent sender from overflowing buffer

Limits number of bytes sender can have in flight



Filling the Pipe

Simple example:

W (in bytes), which we assume is constant
RTT (in sec), which we assume is constant
B (in bytes/sec)

How fast will data be transferred?

If W/RTT < B, the transfer has speed W/RTT
If W/RTT > B, the transfer has speed B



Advertised Window Limits Rate

Sender can send no faster than W/RTT bytes/sec

Receiver only advertises more space when it has consumed old
arriving data

In original TCP design, that was the sole protocol mechanism
controlling sender’s rate

What's missing?



Implementing Sliding Window

Both sender & receiver maintain a window
Sender: not yet ACK'ed
Recelver: not yet delivered to application

Left edge of window:
Sender: beginning of unacknowledged data
Receiver: beginning of undelivered data

For the sender:
Window size = maximum amount of data in flight

For the receiver:
Window size = maximum amount of undelivered data



Sliding Window

Allow a larger amount of data “in flight”
Allow sender to get ahead of the receiver
... though not too far ahead

@ng p@ @ng process

—
Tep Last byte writt% TCP /ast byte read

, 3 ———
Last byte ACKed Next' byte needed

Last byte can send Last byte received



Sliding Window

For the sender, when receives an acknowledgment for new data,
window advances (slides forward)

—

TeP Last byte writt%

Last byte ACKed

Last byte can send



Sliding Window

For the sender, when receives an acknowledgment for new data,
window advances (slides forward)

Last byte ertt%‘

=

Last byte ACKed

Last byte can send



Sliding Window

For the receiver, as the receiving process consumes data, the
window slides forward

@ng process

TCP Last byte read

T A

Next byte needed

Last byte received



Sliding Window

For the receiver, as the receiving process consumes data, the
window slides forward

/
TCP ast bvte read

T 4

Next byte needed

Last byte received

.......



Sliding Window Summary
Sender: window advances when new data ack’d

Recelver: window advances as receiving process consumes data

Recelver advertises to the sender where the receiver window
currently ends (“righthand edge”)

Sender agrees not to exceed this amount

It makes sure by setting its own window size to a value that
can't send beyond the receiver’s righthand edge



TCP Header: What'’s left?

“Must Be Zero”

O bits reserved TT—~—

Number of 4-byte
words in TCP
header;

S5 = no options

Source port

Destination port

Sequence number

Acknowledgment

T

(W; Flags | Advertised window
Checksum Urgent pointer

Options (variable)




TCP Header: What'’s left?

Source port Destination port

Sequence number

Used with URG

flag to indicate Acknowledgment

urgentdata (not  —Hdrlen| 0 | Flags |Advertised window

discussed further) = e ——— —
Checksum @rgent pointer /’

Options (variable)




TCP Header: What'’s left?

Source port Destination port

Sequence number

Acknowledgment

HdrLen| Q <Flags >Advertised window

Checksum Urgent pointer

Options (variable)




TCP Connection Establishment and Initial
Sequence Numbers



Initial Sequence Number (ISN)

Sequence number for the very first byte
E.g., Why not just use ISN = 0?
Practical issue
|IP addresses and port #s uniquely identify a connection
Eventually, though, these port #s do get used again
... sSmall chance an old packet is still in flight
TCP therefore requires changing ISN
initially set from 32-bit clock that ticks every 4 microseconds
now drawn from a pseudo random number generator (security)
To establish a connection, hosts exchange ISNs
How does this help?



Establishing a TCP Connection

A B
SYN
\>

W
W}
%}
%}

Each host tells
its ISN to the
other host.

Three-way handshake to establish connection

ost Asends a SYN (open; “synchronize sequence numbers”)
ost B returns a SYN acknowledgment (SYN ACK)

ost A sends an ACK to acknowledge the SYN ACK




TCP Header

Source port Destination port

Sequence number

Flags:
9% SYN Acknowledgment
ACK g
~IN Hdrlen! g Flags >Advertised window
RST -
PSH Checksum Urgent pointer
URG

Options (variable)

See /usr/include/netinet/tcp.h on Unix Systems



Step 1: A’s Initial SYN Packet

Flags: ('SYN
ACK
FIN
RST
PSH
URG

A's port

B's port

A's

nitial Sequence Number

(Irrelevant since ACK not set)

5=20B |)g
|

|
Advertised window

Checksum

Urgent pointer

A tells B it wants to open a connection...




Step 2: B’s SYN-ACK Packet

B's port A's port
B's Initial Sequence Number
Flags: /SYN BN
ACK | i AICK =A’s I|SN plus 1
FIN ‘ 20B | 0 ' Advertised window
RST |
PSH Checksum Urgent pointer
URG | ] _
Opiicns-(variable)

B tells A it accepts, and is ready to hear the next byte...

... upon receiving this packet, A can start sending data



Step 3: A’'s ACK of the SYN-ACK

Flags: SYN
ACK
FIN
RST
PSH
URG

A's port

B's port

A’s Initial Sequence Number

B's ISN plus 1

20B ‘o ‘ Flags

I
Advertised window

Checksum

Urgent pointer

Onptlons

(variable)

A tells B it’s likewise okay to start sending

... upon receiving this packet, B can start sending data




Timing Diagram: 3-Way Handshaking

Passive
Open
Active
Open Server
Client (initiator) listen()
connect() SYN, SeqNum

Ack=x+1

SyYN + ACK, SeqNumm =Y

ACK! ACk =y -+ 1
accept ()




What if the SYN Packet Gets Lost?

Suppose the SYN packet gets lost

Packet is lost inside the network, or:

Server discards the packet (e.g., listen queue is full)
Eventually, no SYN-ACK arrives

Sender sets a timer and waits for the SYN-ACK

... and retransmits the SYN if needed
How should the TCP sender set the timer?

Sender has no idea how far away the receiver is

Hard to guess a reasonable length of time to wait

SHOULD (RFCs 1122 & 2988) use default of 3 seconds
Other implementations instead use 6 seconds



SYN Loss and Web Downloads

User clicks on a hypertext link
Browser creates a socket and does a “connect”
The “connect” triggers the OS to transmita SYN
If the SYN is lost...
3-6 seconds of delay: can be very long
User may become impatient
... and click the hyperlink again, or click “reload”
User triggers an “abort” of the “connect”
Browser creates a new socket and another “connect’
Essentially, forces a faster send of a new SYN packet!
Sometimes very effective, and the page comes quickly



Tearing Down the Connection



Normal Termination, One Side At A Time

B
92
X
éoﬁ Z = >z \m X
51 \e74 & § 1228
ﬁ ® 0o O
A . "

time >

Finish (FIN) to close and receive remaining bytes
FIN occupies one octet in the sequence space

Other host ack’s the octet to confirm

Closes A's side of the connection, but not B's

Until B likewise sends a FIN
Which A then acks



Normal Termination, Both Together

Same as before, but B sets FIN with their ack of A's FIN

B )
/29 \z gz \i&
% S s = Z <

ﬁ o 0o O ‘ﬁ

A . |

time




Abrupt Termination

ered
RST

B
02
ééjs > &~
sl \278 o 2
ﬁ o 0 O
A . |

time

A sends a RESET (RST)to B
E.g., because app. process on A crashed
That's it
B does not ack the RST
Thus, RST is not delivered reliably
And: any data in flight is lost
But: if B sends anything more, will elicit another RST



TCP State Transitions

Passive open

SYN/SYN + ACK

SYN_RCVD

CLOSED

A
LISTEN

Close

Close

Send SYN
SYN/SYN + ACK

Active open /SYN

Close/FIN

'

ACK \ SYN + ACK/ACK

SYN_SENT

FIN/AC

A

FIN_WAIT_2

/(\
2
,V

o2
\ FIN/ACK
TIME_WAIT

ESTABLISHEDS

Close/FIN
K\

FIN/ACK

CLOSING

\ S

ACK Timeout after two
egment lifetimes

fa

CLOSE_WAIT

y

Close/FIN

LAST_

ACK

Y

ACK

CLOSED

Data, ACK
exchanges
are in here




Reliability: TCP Retransmission



Timeouts and Retransmissions

Reliability requires retransmitting lost data
Involves setting timer and retransmitting on timeout

TCP resets timer whenever new data is ACKed
Retx of packet containing “next byte” when timer goes off



Example

Arriving ACK expects 100
Sender sends packets 100, 200, 300, 400, 500
Timer set for 100
Arriving ACK expects 300
Timer set for 300
Timer goes off
Packet 300 is resent
Arriving ACK expects 600
Packet 600 sent
Timer set for 600



Setting the Timeout Value

* 1 A 1
T T Timeout
RTT |
RTT Y. 1
....... | l
Timeout
1
Timeout too long = inefficient Timeout too short =2

duplicate packets



RTT Estimation

Use exponential averaging of RTT samples

SampleRT T= AckRevdTime- SendPacket Time
EstimatedRTT = o x EstimatedRTT + (1 -o.) x SanpleRT]

O<a =<l
) SampleRTT
% S
> o T
§ —— \T\ T i
§ e \
> \
& 4

Time



Exponential Averaging Example

EstimatedRTT = a*EstimatedRTT + (1 — a)*SampleRTT
Assume RTT is constant > SampleRTT =RTT

RTT

EstimatedRTT (0. = 0.5)

7 8

9 time



Problem: Ambiguous Measurements

How do we differentiate between the real ACK, and ACK of the
retransmitted packet?

Sender Receiver Sender Receiver

rigin
al TranSmiS

SampleRTT

ACK
R etr,

€tra

SampleRTT




Karn/Partridge Algorithm

Measure SampleRTT only for original transmissions

Once a segment has been retransmitted, do not use it for any
further measurements

Computes EstimatedRTT using a = 0.875
Timeout value (RTO) = 2 x EstimatedRTT

Use exponential backoff for repeated retransmissions
Every time RTO timer expires, set RTO < 2:RTO

(Up to maximum = 60 sec)

Every time new measurement comes in (= successful original
transmission), collapse RTO back to 2 x EstimatedRTT



Karn/Partridge in action

Figure 5: Performance of an RFC793 retransmit timer

12
|

10

ATT (sac)

from Jacobson and Karels, SIGCOMM 1988




This is all very interesting, but.....

Implementations often use a coarse-grained timer

500 msec is typical

So what?
Above algorithms are largely irrelevant

Incurring a timeout is expensive

So we rely on duplicate ACKs



Loss with cumulative ACKs

Sender sends packets with 100B and segnos.:
100, 200, 300, 400, 500, 600, 700, 800, 900, ...

Assume the fifth packet (segno 500) is lost, but no others

Stream of ACKs will be:
200, 300, 400, 500, 500, 500, 500,...



Loss with cumulative ACKs

“Duplicate ACKs” are a sign of an isolated loss
The lack of ACK progress means 500 hasn’t been delivered
Stream of ACKs means some packets are being delivered

Therefore, could trigger resend upon receiving k duplicate ACKs
TCP uses k=3

We will revisit this in congestion control



Communication Networks
Spring 2017

Laurent Vanbever

www.vanbever.eu

ETH Ziirich (D-ITET)
May, 8 2017



http://www.vanbever.eu

