
Now, it’s your turn

…to design a Internet protocol

instructions given in class

Application

Transport

Network

Link

Physical

reliable end-to-end deliveryL4

I’m asking you to develop a

reliable transport protocol (sitting at L4)

Let’s consider that Alice wants to transmit a text

to Bob, word-by-word, via the Internet

Alice

once

upon

a

BobInternet

once

upon

a

… …

The Internet (aka the Network layer) only provides

a best-effort global packet delivery service

Alice BobInternet

Data packets can get lost

once

upon

a

upon

Alice BobInternet

Data packets can get corrupted

once

upon

a

twice

upon

@!#%^*]

Alice BobInternet

Data packets can get reordered

Internet

once

upon

a time

upon

a

Alice Bob

Data packets can get duplicated

Internet

once

upon

a

once

upon

a

once

once

Alice Bob

Your job is to design a reliable transport protocol

running on Alice’s and Bob’s computer

Bob should receive the complete text as fast as possible

minimize time until data is transferred

Bob should read exactly what you’ve typed

in the same order, without any gap

Minimize the use of bandwidth

don’t send too many packets

correctness

timeliness

efficiency

property

The number in front of you is

your group number

Design a protocol that can deal with packet loss,

corruption, reordering and duplication

Your task

Design a protocol that can deal with packet loss,

corruption, reordering and duplication

Your protocol

Network Layer

Your protocol

Network Layer

Your protocol receives a list of words on one host,

and deliver them, in order, one-by-one, on another host

send_text ([“once”, “upon”, “a”,  
 “time”, … “end”]) deliver_word ()

Your protocol

Network Layer

Your protocol

Network Layer

send_packet () receive_packet ()

Your protocol uses 2 primitives of the network layer:

send_packet and receive_packet

send_text ([“once”, “upon”, “a”,  
 “time”, … “end”]) deliver_word ()

Your protocol

Network Layer

Your protocol

Network Layer

send_packet () receive_packet ()

unreliable channel

Packets can be lost, corrupted, reordered

or duplicated

send_text ([“once”, “upon”, “a”,  
 “time”, … “end”]) deliver_word ()

then Think about how you would extend your protocol

so that it can send multiple words/packets at a time.

How you deal with packet reordering?

Write down the pseudo-code of a protocol  
that sends at most 1 word/packet at a time.

Each packet can be lost, corrupted or duplicated.

first

You have 15 minutes.

Any group member should be able to present its group’s protocol

output The procedure you run on the sender and receiver

The header(s) you need to add to the packets

An idea of how you support >1 outstanding packets

The basic protocols underlying the Internet

are intuitive

The principles behind the Internet are

more about architecture than engineering

Scale to the entire world

both geographically and numerically

Interconnect many different networks

Ethernet, Optical Fibers, wireless, …

Tolerate and recover from failures

both constant and inevitable

Principles

EngineeringArchitecture

and where

what tasks get done how tasks get done

The principles behind the Internet are

more about architecture than engineering

EngineeringArchitecture

and where

what tasks get done how tasks get done

The principles behind the Internet are

more about architecture than engineering

in the network? 
in the hosts?

with what technology?

Speed

Cost

Port density

Reliability

Quality of Service

Security

…

Network engineering is all about optimization

and balancing tradeoffs

Goals

Solution for the single packet case

send_packet(word);

set_timer();

upon timer going off:

if no ACK received:

send_packet(word);

reset_timer();

receive_packet(p);

send_ack();

if word not delivered:

deliver_word(word);

for word in list:

upon ACK:

pass;

BobAlice

if check(p.payload) == p.checksum:

else:

pass;

The solution for the multiple packets case

will be given in two lectures from now

Even in our protocol, there is a clear tradeoff between

timeliness and efficiency in the selection of the timeout

send_packet(word);

set_timer();

upon timer going off:

if no ACK received:

send_packet(word);

reset_timer();

for word in list:

upon ACK:

pass

Too small timers will cause unnecessary retransmissions,

too large timers will slow down the communication

The “right” value depends on the network conditions

Protocols have to be flexible and adapt to them

